A Banach space is said to be if the maximal number of subspaces of X forming a direct sum is finite and equal to n. We study some properties of spaces, and their links with hereditarily indecomposable spaces; in particular, we show that if X is complex , then dim , where S(X) denotes the space of strictly singular operators on X. It follows that if X is a real hereditarily indecomposable space, then ℒ(X)/S(X) is a division ring isomorphic either to ℝ, ℂ, or ℍ, the quaternionic division ring.
@article{bwmeta1.element.bwnjournal-article-smv123i2p135bwm, author = {V. Perenczi}, title = {Hereditarily finitely decomposable Banach spaces}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {135-149}, zbl = {0874.46008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p135bwm} }
Perenczi, V. Hereditarily finitely decomposable Banach spaces. Studia Mathematica, Tome 122 (1997) pp. 135-149. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p135bwm/
[00000] [E] P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317. | Zbl 0267.46012
[00001] [F1] V. Ferenczi, Operators on subspaces of hereditarily indecomposable Banach spaces, Bull. London Math. Soc., to appear.
[00002] [F2] V. Ferenczi, Quotient hereditarily indecomposable Banach spaces, preprint.
[00003] [G1] W. T. Gowers, A new dichotomy for Banach spaces, preprint.
[00004] [G2] W. T. Gowers, Analytic sets and games in Banach spaces, preprint.
[00005] [GM] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. | Zbl 0827.46008
[00006] [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, New York, 1977. | Zbl 0362.46013
[00007] [R] C. E. Richart, General Theory of Banach Algebras, D. Van Nostrand, Princeton, N.J., 1960.