Hereditarily finitely decomposable Banach spaces
Perenczi, V.
Studia Mathematica, Tome 122 (1997), p. 135-149 / Harvested from The Polish Digital Mathematics Library

A Banach space is said to be HDn if the maximal number of subspaces of X forming a direct sum is finite and equal to n. We study some properties of HDn spaces, and their links with hereditarily indecomposable spaces; in particular, we show that if X is complex HDn, then dim ((X)/S(X))n2, where S(X) denotes the space of strictly singular operators on X. It follows that if X is a real hereditarily indecomposable space, then ℒ(X)/S(X) is a division ring isomorphic either to ℝ, ℂ, or ℍ, the quaternionic division ring.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216383
@article{bwmeta1.element.bwnjournal-article-smv123i2p135bwm,
     author = {V. Perenczi},
     title = {Hereditarily finitely decomposable Banach spaces},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {135-149},
     zbl = {0874.46008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p135bwm}
}
Perenczi, V. Hereditarily finitely decomposable Banach spaces. Studia Mathematica, Tome 122 (1997) pp. 135-149. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i2p135bwm/

[00000] [E] P. Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973), 309-317. | Zbl 0267.46012

[00001] [F1] V. Ferenczi, Operators on subspaces of hereditarily indecomposable Banach spaces, Bull. London Math. Soc., to appear.

[00002] [F2] V. Ferenczi, Quotient hereditarily indecomposable Banach spaces, preprint.

[00003] [G1] W. T. Gowers, A new dichotomy for Banach spaces, preprint.

[00004] [G2] W. T. Gowers, Analytic sets and games in Banach spaces, preprint.

[00005] [GM] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. | Zbl 0827.46008

[00006] [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, New York, 1977. | Zbl 0362.46013

[00007] [R] C. E. Richart, General Theory of Banach Algebras, D. Van Nostrand, Princeton, N.J., 1960.