We consider an isoperimetric problem for product measures with respect to the uniform enlargement of sets. As an example, we find (asymptotically) extremal sets for the infinite product of the exponential measure.
@article{bwmeta1.element.bwnjournal-article-smv123i1p81bwm, author = {S. Bobkov}, title = {Isoperimetric problem for uniform enlargement}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {81-95}, zbl = {0873.60003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i1p81bwm} }
Bobkov, S. Isoperimetric problem for uniform enlargement. Studia Mathematica, Tome 122 (1997) pp. 81-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i1p81bwm/
[00000] [AM] D. Amir and V. D. Milman, Unconditional and symmetric sets in n-dimensional normed spaces, Israel J. Math. 37 (1980), 3-20. | Zbl 0445.46011
[00001] [B1] S. G. Bobkov, Isoperimetric problem for uniform enlargement, Center for Stochastic Processes, Dept. of Statistics, Univ. of North Carolina at Chapel Hill, Tech. Report 394 (1993).
[00002] [B2] S. G. Bobkov, Extremal properties of half-spaces for log-concave distributions, Ann. Probab. 24 (1996), 35-48. | Zbl 0859.60048
[00003] [B3] S. G. Bobkov, A functional form of the isoperimetric inequality for the Gaussian measure, J. Funct. Anal. 135 (1996), 39-49. | Zbl 0838.60013
[00004] [B4] S. G. Bobkov, Isoperimetric inequalities for distributions of exponential type, Ann. Probab. 22 (1994), 978-994. | Zbl 0808.60023
[00005] [BH1] S. G. Bobkov and C. Houdré, A characterization of Gaussian measures via the isoperimetric property of half-spaces, Zap. Nauch. Semin. SPOMI RAN 228 (1996), 31-38 (in Russian); English transl.: J. Math. Sci., to appear.
[00006] [BH2] S. G. Bobkov and C. Houdré, Some connections between Sobolev-type inequalities and isoperimetry, Mem. Amer. Math. Soc., to appear.
[00007] [BH3] S. G. Bobkov and C. Houdré, Isoperimetric constants for product probability measures, Ann. Probab., to appear. | Zbl 0878.60013
[00008] [Bor] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207-211. | Zbl 0292.60004
[00009] [BZ] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer, 1988; transl. from the Russian edition, Nauka, Moscow, 1980.
[00010] [H] L. H. Harper, Optimal numbering and isoperimetric problems on graphs, J. Combin. Theor. 1 (1966), 385-393. | Zbl 0158.20802
[00011] [Led] M. Ledoux, Isoperimetry and Gaussian analysis, in: Ecole d'été de Probabilités de Saint-Flour, 1994, Lecture Notes in Math., Springer, to appear.
[00012] [Lev] P. Lévy, Problèmes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951. | Zbl 0043.32302
[00013] [Sch] E. Schmidt, Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I, II, Math. Nachr. 1 (1948), 81-157; 2 (1949), 171-244.
[00014] [ST] V. N. Sudakov and B. S. Tsirel'son, Extremal properties of half-spaces for spherically invariant measures, J. Soviet Math. 9 (1978), 9-18; transl. from Zap. Nauchn. Sem. LOMI 41 (1974), 14-24 (in Russian).
[00015] [Tal1] M. Talagrand, An isoperimetric theorem on the cube and the Khinchine-Kahane inequalities, Proc. Amer. Math. Soc. 104 (1988), 905-909. | Zbl 0691.60015
[00016] [Tal2] M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon, in: Lecture Notes in Math. 1469, Springer, 1991, 94-124. | Zbl 0818.46047
[00017] [Tal3] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. IHES 81 (1995), 73-205. | Zbl 0864.60013