We study nonnegative functions which are harmonic on a Lipschitz domain with respect to symmetric stable processes. We prove that if two such functions vanish continuously outside the domain near a part of its boundary, then their ratio is bounded near this part of the boundary.
@article{bwmeta1.element.bwnjournal-article-smv123i1p43bwm, author = {Krzysztof Bogdan}, title = {The boundary Harnack principle for the fractional Laplacian}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {43-80}, zbl = {0870.31009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i1p43bwm} }
Bogdan, Krzysztof. The boundary Harnack principle for the fractional Laplacian. Studia Mathematica, Tome 122 (1997) pp. 43-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i1p43bwm/
[00000] [1] R. F. Bass, Probabilistic Techniques in Analysis, Springer, New York, 1995. | Zbl 0817.60001
[00001] [2] R. F. Bass and K. Burdzy, A probabilistic proof of the boundary Harnack principle, in: E. Çinlar, K. L. Chung, and R. K. Getoor (eds.), Seminar on Stochastic Processes, 1989, Birkhäuser, Boston, 1990, 1-16.
[00002] [3] R. F. Bass and K. Burdzy, The boundary Harnack principle for non-divergence form elliptic operators, J. London Math. Soc. 50 (1994), 157-169. | Zbl 0806.35025
[00003] [4] R. F. Bass and M. Cranston, Exit times for symmetric stable processes in , Ann. Probab. 11 (1983), 578-588. | Zbl 0516.60085
[00004] [5] R. M. Blumenthal and R. K. Getoor, Markov Processes and Their Potential Theory, Pure and Appl. Math., Academic Press, New York, 1968. | Zbl 0169.49204
[00005] [6] K. Burdzy, Multidimensional Brownian Excursions and Potential Theory, Pitman Res. Notes in Math. 164, Longman, Harlow, 1987. | Zbl 0691.60066
[00006] [7] L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621-640. | Zbl 0512.35038
[00007] [8] M. Cranston, E. Fabes, and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1988), 171-194. | Zbl 0652.60076
[00008] [9] B. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 275-288. | Zbl 0406.28009
[00009] [10] E. B. Dynkin, Markov Processes, Vols. I, II, Academic Press, New York, 1965.
[00010] [11] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46 (1982), 80-147. | Zbl 0514.31003
[00011] [12] D. S. Jerison and C. E. Kenig, Boundary value problems on Lipschitz domains, in: W. Littman (ed.), Studies in Partial Differential Equations, MAA Stud. Math. 23, Math. Assoc. Amer., 1982, 1-68. | Zbl 0529.31007
[00012] [13] N. S. Landkof, Foundations of Modern Potential Theory, Springer, New York, 1972.
[00013] [14] S. C. Port and C. J. Stone, Infinitely divisible processes and their potential theory, Ann. Inst. Fourier (Grenoble) 21 (2) (1971), 157-275; 21 (4) (1971), 179-265. | Zbl 0195.47601
[00014] [15] S. Watanabe, On stable processes with boundary conditions, J. Math. Soc. Japan 14 (1962), 170-198. | Zbl 0114.33504
[00015] [16] K. Yosida, Functional Analysis, Springer, New York, 1971.