An operator in a Banach space is called upper (lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion to n-tuples of commuting operators and show that this notion defines a joint spectrum. Further we study relations between semi-Browder and (essentially) semiregular operators.
@article{bwmeta1.element.bwnjournal-article-smv123i1p1bwm, author = {Vladim\'\i r Kordula and Vladim\'\i r M\"uller and Vladimir Rako\v cevi\'c}, title = {On the semi-Browder spectrum}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {1-13}, zbl = {0874.47007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv123i1p1bwm} }
Kordula, Vladimír; Müller, Vladimír; Rakočević, Vladimir. On the semi-Browder spectrum. Studia Mathematica, Tome 122 (1997) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv123i1p1bwm/
[00000] [1] J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer. Math. Soc. 66 (1977), 309-314. | Zbl 0375.47001
[00001] [2] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974. | Zbl 0299.46062
[00002] [3] R. E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-413. | Zbl 0662.47003
[00003] [4] S. Grabiner, Ascent, descent, and compact perturbations, ibid. 71 (1978), 79-80.
[00004] [5] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337. | Zbl 0477.47013
[00005] [6] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, 1988. | Zbl 0636.47001
[00006] [7] R. E. Harte and A. W. Wickstead, Upper and lower Fredholm spectra II, Math. Z. 154 (1977), 253-256. | Zbl 0393.47001
[00007] [8] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. | Zbl 0090.09003
[00008] [9] V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, Proc. Roy. Irish Acad., to appear. | Zbl 0880.47005
[00009] [10] V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math. Soc., to appear. | Zbl 0861.47008
[00010] [11] V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128. | Zbl 0857.47001
[00011] [12] H. Kroh and P. Volkmann, Störungssätze für Semifredholmoperatoren, Math. Z. 148 (1976), 295-297. | Zbl 0318.47008
[00012] [13] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. | Zbl 0694.47002
[00013] [14] M. Mbekhta and V. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129-147. | Zbl 0857.47002
[00014] [15] M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisé dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836. | Zbl 0742.47001
[00015] [16] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380. | Zbl 0845.47005
[00016] [17] M. Putinar, Functional calculus and the Gelfand transformation, Studia Math. 84 (1984), 83-86. | Zbl 0498.47009
[00017] [18] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198. | Zbl 0602.47003
[00018] [19] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209. | Zbl 0794.47003
[00019] [20] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 123 (1995), 3823-3825. | Zbl 0854.47008
[00020] [21] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (1996), 131-137. | Zbl 0892.47015
[00021] [22] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and corresponding spectra, in: Proc. Conf. in Priština, University of Priština, 1994, 79-89. | Zbl 0930.47006
[00022] [23] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489. | Zbl 0721.47005
[00023] [24] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. 87 (1987), 137-146. | Zbl 0621.47016
[00024] [25] W. Żelazko, Axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261. | Zbl 0426.47002