Product d-actions on a Lebesgue space and their applications
Filipowicz, I.
Studia Mathematica, Tome 122 (1997), p. 289-298 / Harvested from The Polish Digital Mathematics Library

We define a class of d-actions, d ≥ 2, called product d-actions. For every such action we find a connection between its spectrum and the spectra of automorphisms generating this action. We prove that for any subset A of the positive integers such that 1 ∈ A there exists a weakly mixing d-action, d≥2, having A as the set of essential values of its multiplicity function. We also apply this class to construct an ergodic d-action with Lebesgue component of multiplicity 2dk, where k is an arbitrary positive integer.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216376
@article{bwmeta1.element.bwnjournal-article-smv122i3p289bwm,
     author = {I. Filipowicz},
     title = {Product $$\mathbb{Z}$^d$-actions on a Lebesgue space and their applications},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {289-298},
     zbl = {0873.28014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p289bwm}
}
Filipowicz, I. Product $ℤ^d$-actions on a Lebesgue space and their applications. Studia Mathematica, Tome 122 (1997) pp. 289-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p289bwm/

[00000] [A] O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (1988), 307-319 (in Russian).

[00001] [BL] F. Blanchard and M. Lemańczyk, Measure preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 257-294. | Zbl 0793.28012

[00002] [C] R. V. Chacon, Approximation and spectral multiplicity, in: Lecture Notes in Math. 160, Springer, 1970, 18-27.

[00003] [CFS] I. P. Cornfeld, S. W. Fomin and Y. G. Sinai, Ergodic Theory, Springer, 1982.

[00004] [GKLL] G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992), 157-174. | Zbl 0830.28009

[00005] [KL] J. Kwiatkowski, Jr., and M. Lemańczyk, On the multiplicity function of ergodic group extensions. II, preprint.

[00006] [L] M. Lemańczyk, Toeplitz Z2-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43. | Zbl 0647.28013

[00007] [MN] J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of finite multiplicity, Bull. London Math. Soc. 16 (1984), 402-406. | Zbl 0515.28010

[00008] [O] V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR 168 (1966), 776-779 (in Russian). | Zbl 0152.33404

[00009] [P] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, 1981. | Zbl 0449.28016

[00010] [Q] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math. 1294, Springer, 1987. | Zbl 0642.28013

[00011] [Ro] E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314. | Zbl 0519.28008

[00012] [Ru] W. Rudin, Fourier Analysis on Groups, Interscience Publ., New York, 1962. | Zbl 0107.09603