The problem of compact factors in ergodic theory and its relationship with the problem of extending a cocycle to a cocycle of a larger action are studied.
@article{bwmeta1.element.bwnjournal-article-smv122i3p275bwm, author = {M. Lema\'nczyk}, title = {Cohomology groups, multipliers and factors in ergodic theory}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {275-288}, zbl = {0884.28012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p275bwm} }
Lemańczyk, M. Cohomology groups, multipliers and factors in ergodic theory. Studia Mathematica, Tome 122 (1997) pp. 275-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p275bwm/
[00000] [1] V. Bargman, On unitary ray representations of continuous groups, Ann. of Math. 59 (1954), 1-46.
[00001] [2] A. I. Danilenko, Comparison of cocycles of a measured equivalence relation and lifting problems, Ergodic Theory Dynam. Systems, to appear. | Zbl 0919.28015
[00002] [3] P. Gabriel, M. Lemańczyk and K. Schmidt, Extensions of cocycles for hyperfinite actions, and applications, Monatsh. Math. (1996), to appear. | Zbl 0887.28008
[00003] [4] A. del Junco, M. Lemańczyk and M. K. Mentzen, Semisimplicity, joinings and group extensions, Studia Math. 112 (1995), 141-164. | Zbl 0814.28007
[00004] [5] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7 (1987), 531-557. | Zbl 0646.60010
[00005] [6] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965), 397-403. | Zbl 0152.21403
[00006] [7] J. Kwiatkowski, Factors of ergodic group extensions of rotations, Studia Math. 103 (1992), 123-131. | Zbl 0809.28014
[00007] [8] M. Lemańczyk, Ergodic Compact Abelian Group Extensions of Rotations, Publ. N. Copernicus University, 1990 (habilitation).
[00008] [9] M. Lemańczyk and M. K. Mentzen, Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors, Ergodic Theory Dynam. Systems 10 (1990), 763-776. | Zbl 0725.54030
[00009] [10] G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134-169. | Zbl 0082.11201
[00010] [11] M. K. Mentzen, Ergodic properties of group extensions of dynamical systems with discrete spectra, Studia Math. 101 (1991), 19-31. | Zbl 0809.28015
[00011] [12] C. C. Moore and K. Schmidt, Coboundaries and homomorphisms for non-singular actions and a problem of H. Helson, Proc. London Math. Soc. 40 (1980), 443-475. | Zbl 0428.28014
[00012] [13] D. Newton, On canonical factors of ergodic dynamical systems, J. London Math. Soc. 19 (1979), 129-136. | Zbl 0425.28012
[00013] [14] K. R. Parthasarathy, Multipliers on Locally Compact Groups, Lecture Notes in Math. 93, Springer, 1969. | Zbl 0188.20202
[00014] [15] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Mac Millan of India, 1977. | Zbl 0421.28017
[00015] [16] J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory, in: Ergodic Theory and its Connections with Harmonic Analysis, London Math. Soc., 1995, 207-235. | Zbl 0848.28009
[00016] [17] W. A. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335-341. | Zbl 0499.28016