BMOψ-spaces and applications to extrapolation theory
Geiss, Stefan
Studia Mathematica, Tome 122 (1997), p. 235-274 / Harvested from The Polish Digital Mathematics Library

We investigate a scale of BMOψ-spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with BMOψ-L-estimates, and arrives at Lp-Lp-estimates, or more generally, at estimates between K-functionals from interpolation theory.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216374
@article{bwmeta1.element.bwnjournal-article-smv122i3p235bwm,
     author = {Stefan Geiss},
     title = {$BMO\_$\psi$$-spaces and applications to extrapolation theory},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {235-274},
     zbl = {0874.46011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p235bwm}
}
Geiss, Stefan. $BMO_ψ$-spaces and applications to extrapolation theory. Studia Mathematica, Tome 122 (1997) pp. 235-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p235bwm/

[00000] [1] N. H. Asmar and S. J. Montgomery-Smith, On the distribution of Sidon series, Ark. Mat. 31 (1993), 13-26. | Zbl 0836.43011

[00001] [2] N. L. Bassily and J. Mogyoródi, On the BMOΦ-spaces with general Young function, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 27 (1984), 215-227. | Zbl 0581.60036

[00002] [3] J. Bastero and F. J. Ruiz, Interpolation of operators when the extreme spaces are L, Studia Math. 104 (1993), 133-150. | Zbl 0814.46063

[00003] [4] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. | Zbl 0647.46057

[00004] [5] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976.

[00005] [6] J. Bourgain, On the behaviour of the constant in the Littlewood-Paley inequality, in: J. Lindenstrauss and V. D. Milman (eds.), Israel Seminar, GAFA 1987/88, Lecture Notes in Math. 1376, Springer, 1989, 202-208.

[00006] [7] J. Bourgain and W. J. Davis, Martingale transforms and complex uniform convexity, Trans. Amer. Math. Soc. 294 (1986), 501-515. | Zbl 0638.46011

[00007] [8] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. | Zbl 0301.60035

[00008] [9] D. L. Burkholder, Martingale transforms and the geometry of Banach spaces, in: Probability in Banach spaces III, 1980, Lecture Notes in Math. 860, Springer, 1981, 35-50.

[00009] [10] D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proc. 6th Berkeley Sympos. Math. Statist. Probab., Vol. 2, Univ. of California Press, 1972, 223-240. | Zbl 0253.60056

[00010] [11] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), 249-304. | Zbl 0223.60021

[00011] [12] S. Chang, M. Wilson and J. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), 217-246. | Zbl 0575.42025

[00012] [13] V. H. de la Peña, S. J. Montgomery-Smith, and J. Szulga, Contraction and decoupling inequalities for multilinear forms and U-statistics, Ann. Probab. 22 (1994), 1745-1765. | Zbl 0861.60008

[00013] [14] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Benjamin, Reading, 1973.

[00014] [15] E. Giné and J. Zinn, Central limit theorems and weak laws of large numbers in certain Banach spaces, Z. Wahrsch. Verw. Gebiete 62 (1983), 323-354. | Zbl 0488.60009

[00015] [16] P. Hitczenko, Upper bounds for the Lp-norms of martingales, Probab. Theory Related Fields 86 (1990), 225-238. | Zbl 0677.60017

[00016] [17] F. John, Quasi-isometric mappings, in: Seminari 1962-1963 di Analisi, Algebra, Geometria e Topologia, Vol. II, Ed. Cremonese, Rome, 1965, 462-473.

[00017] [18] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. | Zbl 0102.04302

[00018] [19] W. B. Johnson and G. Schechtman, Sums of independent random variables in rearrangement invariant function spaces, Ann. Probab. 17 (1989), 789-808. | Zbl 0674.60051

[00019] [20] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, 1991.

[00020] [21] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.

[00021] [22] G. Pisier, Martingales with values in uniformly convex spaces, Isreal J. Math. 20 (1975), 326-350. | Zbl 0344.46030

[00022] [23] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. | Zbl 0821.42001

[00023] [24] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J. 28 (1979), 511-544. | Zbl 0429.46016

[00024] [25] G. Wang, Some sharp inequalities for conditionally symmetric martingales, PhD thesis, Univ. of Illinois, 1989.

[00025] [26] F. Weisz, Martingale operators and Hardy spaces generated by them, Studia Math. 114 (1995), 39-70. | Zbl 0822.60043