Let V be an origin-symmetric convex body in , n≥ 2, of Gaussian measure . It is proved that for every choice of vectors in the Euclidean unit ball , there exist signs with . The method used can be modified to give simple proofs of several related results of J. Spencer and E. D. Gluskin.
@article{bwmeta1.element.bwnjournal-article-smv122i3p225bwm, author = {Apostolos Giannopoulos}, title = {On some vector balancing problems}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {225-234}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p225bwm} }
Giannopoulos, Apostolos. On some vector balancing problems. Studia Mathematica, Tome 122 (1997) pp. 225-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p225bwm/
[00000] [1] K. Ball and A. Pajor, Convex bodies with few faces, Proc. Amer. Math. Soc. 110 (1990), 225-231.
[00001] [2] W. Banaszczyk, Balancing vectors and convex bodies, Studia Math. 106 (1993), 93-100.
[00002] [3] W. Banaszczyk, A Beck-Fiala-type theorem for Euclidean norms, European J. Combin. 11 (1990), 497-500.
[00003] [4] W. Banaszczyk and S. J. Szarek, Lattice coverings and Gaussian measures of n-dimensional convex bodies, Discrete Comput. Geom., to appear.
[00004] [5] I. Bárány and V. S. Grinberg, On some combinatorial questions in finite-dimensional spaces, Linear Algebra Appl. 41 (1981), 1-9.
[00005] [6] J. Beck and T. Fiala, Integer-making theorems, Discrete Appl. Math. 3 (1981), 1-8.
[00006] [7] E. D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces, Math. USSR-Sb. 64 (1989), 85-96.
[00007] [8] B. S. Kashin, An analogue of Menshov's "correction" theorem for discrete orthonormal systems, Mat. Zametki 46 (6) (1989), 67-74 (in Russian); English transl.: Math. Notes 46 (5-6) (1989), 934-939.
[00008] [9] D. Kleitman, On a combinatorial conjecture of Erdős, J. Combin. Theory Ser. A 1 (1966), 209-214.
[00009] [10] Z. Sidák, On multivariate normal probabilities of rectangles: their dependence on correlation, Ann. Math. Statist. 39 (1968), 1425-1434.
[00010] [11] J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), 679-706.
[00011] [12] J. Spencer, Balancing vectors in the max norm, Combinatorica 6 (1) (1986), 55-65.
[00012] [13] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, Penn., 1994.
[00013] [14] S. J. Szarek and E. Werner, Confidence regions for means of multivariate normal distributions and a non-symmetric correlation inequality for Gaussian measure, preprint.