We prove the boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function . Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.
@article{bwmeta1.element.bwnjournal-article-smv122i3p201bwm, author = {Yibiao Pan and Gary Sampson and Pawe\l\ Szeptycki}, title = {$L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {201-224}, zbl = {0876.42008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p201bwm} }
Pan, Yibiao; Sampson, Gary; Szeptycki, Paweł. $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains. Studia Mathematica, Tome 122 (1997) pp. 201-224. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p201bwm/
[00000] [AS] Aronszajn, N. and Szeptycki, P., On general integral transformations, Math. Ann. 163 (1966), 127-154. | Zbl 0171.12402
[00001] [FS] J. J. F. Fournier and Stewart, J., Amalgams of and , Bull. Amer. Math. Soc. 13 (1985), 1-21.
[00002] [G] Gagliardo, E., On integral transformations with positive kernels, Proc. Amer. Math. Soc. 16 (1965), 429-434. | Zbl 0161.32404
[00003] [Ho] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983.
[00004] [JS] Jurkat, W.B. and Sampson, G., The complete solution to the mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. | Zbl 0507.47013
[00005] [LS] Labuda, I. and Szeptycki, P., Extended domains of some integral operators with rapidly oscillating kernels, Nederl. Akad. Wetensch. Proc. 89 (1986), 87-98. | Zbl 0622.47032
[00006] [LS2] Labuda, Extensions of integral operators, Math. Ann. 281 (1988), 341-353. | Zbl 0617.45013
[00007] [M] Muckenhoupt, B., Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016
[00008] [Pan] Pan, Y., Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. | Zbl 0728.42013
[00009] [PS] Phong, D.H. and Stein, E.M., Hilbert integrals, singular integrals, and Radon transforms I, Acta Math. 157 (1986), 99-157. | Zbl 0622.42011
[00010] [Sj] Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. | Zbl 0631.42010
[00011] [St] Stein, E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.
[00012] [Sz] Szeptycki,P., Extended domains of some integral operators, Rocky Mountain J. Math. 22 (1992), 393-404. | Zbl 0761.47026
[00013] [Wal] Walther, B.G., Maximal estimates for oscillatory integrals with concave phase, preprint, 1994.
[00014] [Zyg] Zygmund, A., Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.