L2 and Lp estimates for oscillatory integrals and their extended domains
Pan, Yibiao ; Sampson, Gary ; Szeptycki, Paweł
Studia Mathematica, Tome 122 (1997), p. 201-224 / Harvested from The Polish Digital Mathematics Library

We prove the Lp boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function |x|α|y|β. Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216372
@article{bwmeta1.element.bwnjournal-article-smv122i3p201bwm,
     author = {Yibiao Pan and Gary Sampson and Pawe\l\ Szeptycki},
     title = {$L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {201-224},
     zbl = {0876.42008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p201bwm}
}
Pan, Yibiao; Sampson, Gary; Szeptycki, Paweł. $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains. Studia Mathematica, Tome 122 (1997) pp. 201-224. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i3p201bwm/

[00000] [AS] Aronszajn, N. and Szeptycki, P., On general integral transformations, Math. Ann. 163 (1966), 127-154. | Zbl 0171.12402

[00001] [FS] J. J. F. Fournier and Stewart, J., Amalgams of Lp and lq, Bull. Amer. Math. Soc. 13 (1985), 1-21.

[00002] [G] Gagliardo, E., On integral transformations with positive kernels, Proc. Amer. Math. Soc. 16 (1965), 429-434. | Zbl 0161.32404

[00003] [Ho] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983.

[00004] [JS] Jurkat, W.B. and Sampson, G., The complete solution to the (Lp,Lq) mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. | Zbl 0507.47013

[00005] [LS] Labuda, I. and Szeptycki, P., Extended domains of some integral operators with rapidly oscillating kernels, Nederl. Akad. Wetensch. Proc. 89 (1986), 87-98. | Zbl 0622.47032

[00006] [LS2] Labuda, Extensions of integral operators, Math. Ann. 281 (1988), 341-353. | Zbl 0617.45013

[00007] [M] Muckenhoupt, B., Weighted norm inequalities for the Hardy-Littlewood maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016

[00008] [Pan] Pan, Y., Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. | Zbl 0728.42013

[00009] [PS] Phong, D.H. and Stein, E.M., Hilbert integrals, singular integrals, and Radon transforms I, Acta Math. 157 (1986), 99-157. | Zbl 0622.42011

[00010] [Sj] Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. | Zbl 0631.42010

[00011] [St] Stein, E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993.

[00012] [Sz] Szeptycki,P., Extended domains of some integral operators, Rocky Mountain J. Math. 22 (1992), 393-404. | Zbl 0761.47026

[00013] [Wal] Walther, B.G., Maximal estimates for oscillatory integrals with concave phase, preprint, 1994.

[00014] [Zyg] Zygmund, A., Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.