Let F be an analytic function from an open subset Ω of the complex plane into the algebra of n×n matrices. Denoting by the decreasing sequence of singular values of a matrix, we prove that the functions and are subharmonic on Ω for 1 ≤ k ≤ n.
@article{bwmeta1.element.bwnjournal-article-smv122i2p195bwm, author = {Bernard Aupetit}, title = {On log-subharmonicity of singular values of matrices}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {195-200}, zbl = {0881.15010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p195bwm} }
Aupetit, Bernard. On log-subharmonicity of singular values of matrices. Studia Mathematica, Tome 122 (1997) pp. 195-200. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p195bwm/
[00000] [1] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
[00001] [2] B. Aupetit et A. Iyamuremye, Sous-harmonicité de la partie de Riesz du spectre d'un opérateur, Ann. Sci. Math. Québec 12 (1988), 171-177.
[00002] [3] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser, Basel, 1986.
[00003] [4] O. Nevanlinna, A characteristic function for matrix valued meromorphic functions, Helsinki University of Technology, Institute of Mathematics Research Report A 355, 1995. | Zbl 0869.30024
[00004] [5] O. Nevanlinna, Meromorphic resolvents and power bounded operators, Helsinki University of Technology, Institute of Mathematics Research Report A 358, 1996. | Zbl 0865.65034