The set of automorphisms of B(H) is topologically reflexive in B(B(H))
Molnár, Lajos
Studia Mathematica, Tome 122 (1997), p. 183-193 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to prove the statement announced in the title which can be reformulated in the following way. Let H be a separable infinite-dimensional Hilbert space and let Φ: B(H) → B(H) be a continuous linear mapping with the property that for every A ∈ B(H) there exists a sequence (Φn) of automorphisms of B(H) (depending on A) such that Φ(A)=limnΦn(A). Then Φ is an automorphism. Moreover, a similar statement holds for the set of all surjective isometries of B(H).

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216369
@article{bwmeta1.element.bwnjournal-article-smv122i2p183bwm,
     author = {Lajos Moln\'ar},
     title = {The set of automorphisms of B(H) is topologically reflexive in B(B(H))},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {183-193},
     zbl = {0871.47030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p183bwm}
}
Molnár, Lajos. The set of automorphisms of B(H) is topologically reflexive in B(B(H)). Studia Mathematica, Tome 122 (1997) pp. 183-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p183bwm/

[00000] [Bre] M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), 454-462. | Zbl 0769.16015

[00001] [BS1] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms and local derivations, Canad. J. Math. 45 (1993), 483-496. | Zbl 0796.15001

[00002] [BS2] M. Brešar and P. Šemrl, On local automorphisms and mappings that preserve idempotents, Studia Math. 113 (1995), 101-108. | Zbl 0835.47020

[00003] [FMS] C. K. Fong, C. R. Miers and A. R. Sourour, Lie and Jordan ideals of operators on Hilbert space, Proc. Amer. Math. Soc. 84 (1982), 516-520. | Zbl 0509.47035

[00004] [Her] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341.

[00005] [JR] N. Jacobson and C. Rickart, Jordan homomorphisms of rings, ibid. 69 (1950), 479-502. | Zbl 0039.26402

[00006] [Kad1] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. | Zbl 0045.06201

[00007] [Kad2] R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509. | Zbl 0751.46041

[00008] [LS] D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Providence, R.I., 1990, 187-194.

[00009] [LoS] A. I. Loginov and V. S. Shul'man, Hereditary and intermediate reflexivity of W*-algebras, Izv. Akad. Nauk SSSR 39 (1975), 1260-1273 (in Russian); English transl.: Math. USSR-Izv. 9 (1975), 1189-1201.

[00010] [Pal] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. I, Encyclopedia Math. Appl. 49, Cambridge University Press, 1994.

[00011] [PS] H. Porta and J. T. Schwartz, Representations of the algebra of all operators in Hilbert space, and related analytic function algebras, Comm. Pure Appl. Math. 20 (1967), 457-492. | Zbl 0148.37702

[00012] [RD] B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416. | Zbl 0171.11503

[00013] [Shu] V. S. Shul'man, Operators preserving ideals in C*-algebras, Studia Math. 109 (1994), 67-72.