For d > 1, let , , where f̂ is the Fourier transform of , and its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.
@article{bwmeta1.element.bwnjournal-article-smv122i2p167bwm, author = {Sichun Wang}, title = {On the maximal operator associated with the free Schr\"odinger equation}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {167-182}, zbl = {0877.42007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p167bwm} }
Wang, Sichun. On the maximal operator associated with the free Schrödinger equation. Studia Mathematica, Tome 122 (1997) pp. 167-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p167bwm/
[00000] [1] M. Ben-Artzi and A. Devinatz, Local smoothing and convergence properties of Schrödinger type equations, J. Funct. Anal. 101 (1991), 231-254.
[00001] [2] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1-16.
[00002] [3] L. Carleson, Some analytical problems related to statistical mechanics, in: Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer, 1979, 5-45.
[00003] [4] M. Cowling, Pointwise behavior of solutions to Schrödinger equations, in: Harmonic Analysis, Lecture Notes in Math. 992, Springer, 1983, 83-90.
[00004] [5] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, in: Harmonic Analysis, Lecture Notes in Math. 908, Springer, 1982, 205-209.
[00005] [6] C. E. Kenig, G. Ponce, and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69. | Zbl 0738.35022
[00006] [7] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-246. | Zbl 0525.42011
[00007] [8] E. Prestini, Radial functions and regularity of solutions to the Schrödinger equation, Monatsh. Math. 109 (1990), 135-143. | Zbl 0777.42005
[00008] [9] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, 1976.
[00009] [10] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. | Zbl 0631.42010
[00010] [11] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc. Ser. A 59 (1995), 134-142. | Zbl 0856.42013
[00011] [12] P. Sjölin, Global maximal estimates for solutions to the Schrödinger equation, Studia Math. 110 (1994), 105-114. | Zbl 0829.42017
[00012] [13] P. Sjölin, maximal estimates for solutions to the Schrödinger equation, informal notes, Aug. 1994. | Zbl 0829.42017
[00013] [14] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. | Zbl 0232.42007
[00014] [15] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878. | Zbl 0654.42014
[00015] [16] J. Walker, Fourier Analysis, Oxford Univ. Press, 1988. | Zbl 0669.42001
[00016] [17] S. Wang, A note on the maximal operator associated with the Schrödinger equation, Preprint series No. 7 (1993-1994), Dept. of Math. and Statistics, McMaster Univ., Canada.