We define Hardy spaces of pairs of conjugate temperatures on using the equations introduced by Kochneff and Sagher. As in the holomorphic case, the Hilbert transform relates both components. We demonstrate that the boundary distributions of our Hardy spaces of conjugate temperatures coincide with the boundary distributions of Hardy spaces of holomorphic functions.
@article{bwmeta1.element.bwnjournal-article-smv122i2p153bwm, author = {Martha Guzm\'an-Partida}, title = {Hardy spaces of conjugate temperatures}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {153-165}, zbl = {0871.42021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p153bwm} }
Guzmán-Partida, Martha. Hardy spaces of conjugate temperatures. Studia Mathematica, Tome 122 (1997) pp. 153-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p153bwm/
[00000] [1] H. S. Bear, Hardy spaces of heat functions, Trans. Amer. Math. Soc. 301 (1987), 831-844. | Zbl 0633.31002
[00001] [2] J. R. Cannon, The One-Dimensional Heat Equation, Encyclopedia Math. Appl. 23, Addison-Wesley, 1984.
[00002] [3] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00003] [4] T. M. Flett, Temperatures, Bessel potentials and Lipschitz spaces, Proc. London Math. Soc. (3) 22 (1971), 385-451.
[00004] [5] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Notas Mat. 116, North-Holland, Amsterdam, 1985.
[00005] [6] I. I. Hirschman and D. V. Widder, The Convolution Transform, Princeton University Press, 1955. | Zbl 0039.33202
[00006] [7] E. Kochneff and Y. Sagher, Conjugate temperatures, J. Approx. Theory 70 (1992), 39-49.
[00007] [8] S. Pérez-Esteva, Hardy spaces of vector-valued heat functions, Houston J. Math. 19 (1993), 127-134. | Zbl 0806.46036
[00008] [9] M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1949), 1-223.
[00009] [10] E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, 1993. | Zbl 0821.42001
[00010] [11] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables. I. The theory of spaces, Acta Math. 103 (1960), 25-62. | Zbl 0097.28501