We show that if U is a balanced open subset of a separable Banach space with the bounded approximation property, then the space ℋ(U) of all holomorphic functions on U, with the Nachbin compact-ported topology, is always bornological.
@article{bwmeta1.element.bwnjournal-article-smv122i2p139bwm, author = {Jorge Mujica}, title = {Spaces of holomorphic mappings on Banach spaces with a Schauder basis}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {139-151}, zbl = {0898.46034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p139bwm} }
Mujica, Jorge. Spaces of holomorphic mappings on Banach spaces with a Schauder basis. Studia Mathematica, Tome 122 (1997) pp. 139-151. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p139bwm/
[00000] [1] R. Aron, L. A. Moraes and R. Ryan, Factorization of holomorphic mappings in infinite dimensions, Math. Ann. 277 (1987), 617-628. | Zbl 0611.46053
[00001] [2] S. B. Chae, Holomorphic germs on Banach spaces, Ann. Inst. Fourier (Grenoble) 21 (3) (1971), 107-141. | Zbl 0208.15002
[00002] [3] G. Coeuré, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, ibid. 20 (1) (1970), 361-432. | Zbl 0187.39003
[00003] [4] G. Coeuré, Fonctionnelles analytiques sur certains espaces de Banach, ibid. 21 (2) (1971), 15-21. | Zbl 0205.41303
[00004] [5] S. Dineen, The Cartan-Thullen theorem for Banach spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1970), 667-676. | Zbl 0235.46037
[00005] [6] S. Dineen, Holomorphy types on a Banach space, Studia Math. 39 (1971), 241-288. | Zbl 0235.32013
[00006] [7] S. Dineen, Bounding subsets of a Banach space, Math. Ann. 192 (1971), 61-70. | Zbl 0202.12803
[00007] [8] S. Dineen, Holomorphic functions on -modules, ibid. 196 (1972), 106-116. | Zbl 0219.46021
[00008] [9] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. | Zbl 0484.46044
[00009] [10] L. Gruman et C. Kiselman, Le problème de Levi dans les espaces de Banach à base, C. R. Acad. Sci. Paris 274 (1972), 1296-1299.
[00010] [11] Y. Hervier, Sur le problème de Levi pour les espaces étalés banachiques, ibid. 275 (1972), 821-824. | Zbl 0243.32018
[00011] [12] W. Johnson, H. Rosenthal and M. Zippin, On bases, finite-dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. | Zbl 0217.16103
[00012] [13] B. Josefson, A counterexample in the Levi problem, in: Proceedings on Infinite Dimensional Holomorphy, T. Hayden and T. Suffridge (eds.), Lecture Notes in Math. 364, Springer, Berlin, 1974, 168-177.
[00013] [14] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968.
[00014] [15] J. Mujica, Holomorphic approximation in Fréchet spaces with basis, J. London Math. Soc. 29 (1984), 113-126. | Zbl 0546.46022
[00015] [16] J. Mujica, Holomorphic approximation in infinite-dimensional Riemann domains, Studia Math. 82 (1985), 107-134. | Zbl 0584.32035
[00016] [17] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, Amsterdam, 1986. | Zbl 0586.46040
[00017] [18] L. Nachbin, On the topology of the space of all holomorphic functions on a given open subset, Indag. Math. 29 (1967), 366-368. | Zbl 0147.11402
[00018] [19] L. Nachbin, Concerning spaces of holomorphic mappings, lecture notes, Rutgers Univ., New Brunswick, N.J., 1970. | Zbl 0258.46027
[00019] [20] L. Nachbin, Sur les espaces vectoriels topologiques d'applications continues, C. R. Acad. Sci. Paris 271 (1970), 596-598. | Zbl 0205.12402
[00020] [21] P. Noverraz, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, North-Holland Math. Stud. 3, North-Holland, Amsterdam, 1973. | Zbl 0251.46049
[00021] [22] P. Noverraz, Approximation of holomorphic or plurisubharmonic functions in certain Banach spaces, in: Proceedings on Infinite Dimensional Holomorphy, T. Hayden and T. Suffridge (eds.), Lecture Notes in Math. 364, Springer, Berlin, 1974, 178-185. | Zbl 0284.46018
[00022] [23] A. Pełczyński, On the impossibility of embedding of the space L in certain Banach spaces, Colloq. Math. 8 (1961), 199-203. | Zbl 0099.09501
[00023] [24] A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239-243. | Zbl 0223.46019
[00024] [25] M. Schottenloher, The Levi problem for domains spread over locally convex spaces with a finite-dimensional Schauder decomposition, Ann. Inst. Fourier (Grenoble) 26 (4) (1976), 207-237. | Zbl 0309.32013