An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].
@article{bwmeta1.element.bwnjournal-article-smv122i2p131bwm, author = {Vladimir Rako\v cevi\'c}, title = {Semi-Browder operators and perturbations}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {131-137}, zbl = {0892.47015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p131bwm} }
Rakočević, Vladimir. Semi-Browder operators and perturbations. Studia Mathematica, Tome 122 (1997) pp. 131-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p131bwm/
[00000] [1] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, 1974. | Zbl 0299.46062
[00001] [2] A. S. Faĭnshteĭn, On measures of noncompactness of linear operators and analogs of the minimum modulus for semi-Fredholm operators, Spektr. Teor. Oper. 6, Èlm, Baku, 1985, 182-195 (in Russian).
[00002] [3] M. A. Goldman and S. N. Kračkovskiĭ, Behaviour of the space of zero elements with finite-dimensional salient on the Riesz kernel under perturbations of the operator, Dokl. Akad. Nauk SSSR 221 (1975), 532-534 (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 370-373.
[00003] [4] M. González and A. Martinón, Operational quantities derived from the norm and measures of non-compactness, Proc. Roy. Irish Acad. Sect. A 91 (1991), 63-70.
[00004] [5] M. González and A. Martinón, Operational quantities characterizing semi-Fredholm operators, Studia Math. 114 (1995), 13-27.
[00005] [6] S. Grabiner, Ascent, descent, and compact perturbations, Proc. Amer. Math. Soc. 71 (1978), 79-80. | Zbl 0392.47002
[00006] [7] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988. | Zbl 0636.47001
[00007] [8] M. A. Kaashoek and D. C. Lay, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 186 (1972), 35-47.
[00008] [9] V. Kordula, V. Müller and V. Rakočević, On the semi-Browder spectrum, Studia Math., to appear. | Zbl 0874.47007
[00009] [10] H. Kroh and P. Volkmann, Störungssätze für Semifredholmoperatoren, Math. Z. 148 (1976), 295-297. | Zbl 0318.47008
[00010] [11] D. Lay, Characterizations of the essential spectrum of F. E. Browder, Bull. Amer. Math. Soc. 74 (1968), 246-248. | Zbl 0157.45103
[00011] [12] A. Martinón, Cantidades operacionales en teoría de Fredholm, Doctoral thesis, University of La Laguna, 1989.
[00012] [13] V. Müller, The inverse spectral radius formula and removability of spectrum, Časopis Pěst. Mat. 108 (1983), 412-415. | Zbl 0567.46023
[00013] [14] V. Rakočević, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198. | Zbl 0602.47003
[00014] [15] V. Rakočević, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc. 123 (1995), 3823-3825. | Zbl 0854.47008
[00015] [16] M. Schechter, On perturbations of essential spectra, J. London Math. Soc. (2) 1 (1969), 343-347. | Zbl 0192.47403
[00016] [17] H.-O. Tylli, On the asymptotic behaviour of some quantities related to semiFredholm operators, J. London Math. Soc. (2) 31 (1985), 340-348.
[00017] [18] H.-O. Tylli, On semi-Fredholm operators, Calkin algebras and some related quantities, Academic dissertation, Helsinki, Department of Mathematics, University of Helsinki, 1986.
[00018] [19] T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. Sect. A 87 (1987), 137-146. | Zbl 0621.47016
[00019] [20] J. Zemánek, The semi-Fredholm radius of a linear operator, Bull. Polish Acad. Sci. Math. 32 (1984), 67-76. | Zbl 0583.47016
[00020] [21] J. Zemánek, Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219-234. | Zbl 0556.47008
[00021] [22] J. Zemánek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. Sect. A 86 (1986), 57-62.