An open mapping theorem for analytic multifunctions
Słodkowski, Zbigniew
Studia Mathematica, Tome 122 (1997), p. 117-122 / Harvested from The Polish Digital Mathematics Library

The paper gives sufficient conditions for projections of certain pseudoconcave sets to be open. More specifically, it is shown that the range of an analytic set-valued function whose values are simply connected planar continua is open, provided there does not exist a point which belongs to boundaries of all the fibers. The main tool is a theorem on existence of analytic discs in certain polynomially convex hulls, obtained earlier by the author.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216363
@article{bwmeta1.element.bwnjournal-article-smv122i2p117bwm,
     author = {Zbigniew S\l odkowski},
     title = {An open mapping theorem for analytic multifunctions},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {117-122},
     zbl = {0873.32012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p117bwm}
}
Słodkowski, Zbigniew. An open mapping theorem for analytic multifunctions. Studia Mathematica, Tome 122 (1997) pp. 117-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i2p117bwm/

[00000] [BaHa] L. Baribeau and S. Harbottle, Two new open mapping theorems for analytic multifunctions, Proc. Amer. Math. Soc. 115 (1992), 1009-1012. | Zbl 0755.30040

[00001] [Ok] K. Oka, Note sur les familles de fonctions analytiques multiformes etc., J. Sci. Hiroshima Univ. 4 (1934), 93-98. | Zbl 60.0243.06

[00002] [Ra1] T. J. Ransford, Open mapping, inversion and implicit function theorems for analytic multivalued functions, Proc. London Math. Soc. 49 (1984), 537-562. | Zbl 0526.46045

[00003] [Ra2] T. J. Ransford, On the range of an analytic multivalued function, Pacific J. Math. 123 (1986), 421-439. | Zbl 0553.30034

[00004] [Sł1] Z. Słodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981), 363-386. | Zbl 0452.46028

[00005] [Sł2] Z. Słodkowski, Polynomial hulls in 2 and quasi-circles, Ann. Scuola Norm. Sup. Pisa (4) 16 (1989), 367-391.