A generalization of the uniform ergodic theorem to poles of arbitrary order
Burlando, Laura
Studia Mathematica, Tome 122 (1997), p. 75-98 / Harvested from The Polish Digital Mathematics Library
Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216362
@article{bwmeta1.element.bwnjournal-article-smv122i1p75bwm,
     author = {Laura Burlando},
     title = {A generalization of the uniform ergodic theorem to poles of arbitrary order},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {75-98},
     zbl = {0869.47007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i1p75bwm}
}
Burlando, Laura. A generalization of the uniform ergodic theorem to poles of arbitrary order. Studia Mathematica, Tome 122 (1997) pp. 75-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i1p75bwm/

[00000] [B] L. Burlando, Uniformly p-ergodic operators and poles of the resolvent, lecture given during the Semester "Linear Operators", Warszawa, 1994.

[00001] [D1] N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. | Zbl 0063.01185

[00002] [D2] N. Dunford, Spectral theory, Bull. Amer. Math. Soc. 49 (1943), 637-651. | Zbl 0063.01184

[00003] [H] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1967.

[00004] [K] T. Kato, Perturbation theory for nullity. deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. | Zbl 0090.09003

[00005] [LM1] K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), 127-135. | Zbl 0812.47031

[00006] [LM2] K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. | Zbl 0849.47008

[00007] [La] D. C. Lay, Spectral analysis using ascent. descent. nullity and defect, Math. Ann. 184 (1970), 197-214. | Zbl 0177.17102

[00008] [Li] M. Lin, On the uniform ergodic theorem, Proc. Amer Math. Soc. 43 (1974), 337-340. | Zbl 0252.47004

[00009] [MO] M. Mbekhta et O. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) 59 (1994), 525-543. | Zbl 0822.47003

[00010] [MZ] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.

[00011] [R1] H. C. Rönnefarth, On the differences of the consecutive powers of Banach algebra elements, in: Linear Operators, Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., Warszawa, to appear.

[00012] [R2] H. C. Rönnefarth, On properties of the powers of a bounded linear operator and their characterization by its spectrum and resolvent, thesis, Berlin, 1996.

[00013] [R3] H. C. Rönnefarth, A unified approach to some recent results in the uniform ergodic theory, preprint.

[00014] [TL] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, 1980.

[00015] [W] H.-D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546. | Zbl 0555.47008

[00016] [Z] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385. | Zbl 0822.47005