Let (Ω,∑,μ) be a purely non-atomic measure space, and let 1 < p < ∞. If is isomorphic, as a Banach space, to for some purely atomic measure space (Ω’,∑’,μ’), then there is a measurable partition such that is countably generated and σ-finite, and that μ(σ) = 0 or ∞ for every measurable . In particular, is isomorphic to .
@article{bwmeta1.element.bwnjournal-article-smv122i1p55bwm, author = {Denny Leung}, title = {Purely non-atomic weak $L^p$ spaces}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {55-66}, zbl = {0901.46025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i1p55bwm} }
Leung, Denny. Purely non-atomic weak $L^p$ spaces. Studia Mathematica, Tome 122 (1997) pp. 55-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i1p55bwm/
[00000] [1] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces , Studia Math. 21 (1962), 161-176.
[00001] [2] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, 1974. | Zbl 0285.46024
[00002] [3] D. H. Leung, Isomorphism of certain weak spaces, Studia Math. 104 (1993), 151-160. | Zbl 0814.46015
[00003] [4] D. H. Leung, Isomorphic classification of atomic weak spaces, in: Interaction between Functional Analysis, Harmonic Analysis and Probability, N. J. Kalton, E. Saab and S. J. Montgomery-Smith (eds.), Marcel Dekker, 1996, 315-330. | Zbl 0836.46016
[00004] [5] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, 1977. | Zbl 0362.46013
[00005] [6] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979. | Zbl 0403.46022
[00006] [7] H. P. Lotz, Weak* convergence in the dual of weak , unpublished manuscript. | Zbl 1201.46010
[00007] [8] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, 1974. | Zbl 0296.47023