Four characterizations of scalar-type operators with spectrum in a half-line
Vieten, Peter
Studia Mathematica, Tome 122 (1997), p. 39-54 / Harvested from The Polish Digital Mathematics Library

C0-scalar-type spectrality criterions for operators A whose resolvent set contains the negative reals are provided. The criterions are given in terms of growth conditions on the resolvent of A and the semigroup generated by A. These criterions characterize scalar-type operators on the Banach space X if and only if X has no subspace isomorphic to the space of complex null-sequences.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216359
@article{bwmeta1.element.bwnjournal-article-smv122i1p39bwm,
     author = {Peter Vieten},
     title = {Four characterizations of scalar-type operators with spectrum in a half-line},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {39-54},
     zbl = {0871.47028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i1p39bwm}
}
Vieten, Peter. Four characterizations of scalar-type operators with spectrum in a half-line. Studia Mathematica, Tome 122 (1997) pp. 39-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i1p39bwm/

[00000] [1] P. L. Butzer and H. Behrens, Semi-Groups of Operators and Approximation, Springer, Berlin, 1967.

[00001] [2] R. deLaubenfels, Unbounded scalar operators on Banach lattices, Honam Math. J. 8 (1986), 1-19.

[00002] [3] R. deLaubenfels, C0-scalar operators on cyclic spaces, Studia Math. 92 (1989), 49-58. | Zbl 0697.47034

[00003] [4] R. deLaubenfels, Automatic extension of functional calculi, ibid. 114 (1995), 238-259.

[00004] [5] R. deLaubenfels and I. Doust, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171. | Zbl 0815.47042

[00005] [6] R. deLaubenfels and S. Kantorovitz, Laplace and Laplace-Stieltjes space, J. Funct. Anal. 116 (1993), 1-61. | Zbl 0795.47026

[00006] [7] R. deLaubenfels and S. Kantorovitz The semi-simplicity manifold for arbitrary Banach spaces, ibid. 113 (1995), 138-167. | Zbl 0867.47028

[00007] [8] J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.

[00008] [9] I. Doust, Well-bounded and scalar type spectral operators on spaces not containing c0, Proc. Amer. Math. Soc. 105 (1989), 376-370. | Zbl 0674.47022

[00009] [10] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978. | Zbl 0384.47001

[00010] [11] N. Dunford and J. T. Schwartz, Linear Operators, Part III, Wiley-Interscience, New York, 1971.

[00011] [12] J. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, 1985.

[00012] [13] R. Hughes and S. Kantorovitz, Spectral analysis of certain operator functions, J. Operator Theory 22 (1989), 243-265. | Zbl 0761.47020

[00013] [14] S. Kantorovitz, Characterization of unbounded spectral operators with spectrum in a half-line, Comment. Math. Helv. 56 (1981), 163-178. | Zbl 0472.47021

[00014] [15] W. Ricker, Characterization of Stieltjes transforms of vector measures and an application to spectral theory, Hokkaido Math. J. 13 (1984), 299-309. | Zbl 0577.47037

[00015] [16] H. H. Schäfer, A generalized moment problem, Math. Ann. 146 (1962), 326-330. | Zbl 0102.09905

[00016] [17] P. Vieten, Holomorphie und Laplace Transformation banachraumwertiger Funktionen, Shaker, Aachen, 1995.

[00017] [18] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941. | Zbl 0063.08245