Let L be the full laplacian on the Heisenberg group of arbitrary dimension n. Then for such that , s > 3/4, for a we have . On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group , then for every s < 1 there exists a sequence and such that and for a we have .
@article{bwmeta1.element.bwnjournal-article-smv122i1p15bwm, author = {Jacek Zienkiewicz}, title = {Initial value problem for the time dependent Schr\"odinger equation on the Heisenberg group}, journal = {Studia Mathematica}, volume = {122}, year = {1997}, pages = {15-37}, zbl = {0869.22004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv122i1p15bwm} }
Zienkiewicz, Jacek. Initial value problem for the time dependent Schrödinger equation on the Heisenberg group. Studia Mathematica, Tome 122 (1997) pp. 15-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv122i1p15bwm/
[00000] [B] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1-16. | Zbl 0798.35131
[00001] [Car] A. Carbery, Radial Fourier multipliers and associated maximal functions, in: Recent Progress in Fourier Analysis, North-Holland Math. Stud. 111, North-Holland, 1985, 49-56.
[00002] [C] L. Carleson, Some analytic problems related to statistical mechanics, in: Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer, 1980, 5-45.
[00003] [Cw] M. Cowling, Pointwise behaviour of solutions to Schrödinger equations, in: Harmonic Analysis, Lecture Notes in Math. 992, Springer, 1983, 83-90.
[00004] [DK] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, in: Harmonic Analysis, Lecture Notes in Math. 908, Springer, 1982, 205-209.
[00005] [E1] A. Erdélyi, Asymptotic forms for Laguerre polynomials, J. Indian Math. Soc. 24 (1960), 235-250.
[00006] [E2] A. Erdélyi, W. Magnus, F. Oberhettinger and G. F. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953. | Zbl 0051.30303
[00007] [HR] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence of bounded harmonic functions on balls in , Invent. Math. 62 (1980), 325-331. | Zbl 0449.31008
[00008] [KPV1] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69. | Zbl 0738.35022
[00009] [KPV2] C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347. | Zbl 0737.35102
[00010] [KR] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-246. | Zbl 0525.42011
[00011] [M] D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. 131 (1990), 567-587. | Zbl 0731.43003
[00012] [MR] D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups I, Invent. Math. 101 (1990), 545-582. | Zbl 0742.43006
[00013] [NS] E. Nelson and W. F. Stinespring, Representations of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547-560. | Zbl 0092.32103
[00014] [P] E. Prestini, Radial functions and regularity of solutions to the Schrödinger equation, Monatsh. Math. 109 (1990), 135-143. | Zbl 0777.42005
[00015] [SS] P. Sjögren and P. Sjölin, Convergence properties for the time dependent Schrödinger equation, Ann. Acad. Sci. Fenn. Ser. AI Math. 14 (1989), 13-25. | Zbl 0629.35055
[00016] [S1] P. Sjölin, Regularity of solutions to the Schrödinger equations, Duke Math. J. 55 (1987), 699-715. | Zbl 0631.42010
[00017] [S2] P. Sjölin, Global maximal estimates for solutions to the Schrödinger equation, Studia Math. 110 (1994), 105-114. | Zbl 0829.42017
[00018] [S3] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc. 59 (1995), 134-142. | Zbl 0856.42013
[00019] [Sz] G. Szegő, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., 1939.
[00020] [V] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878. | Zbl 0654.42014