The notion of a stable inverse-limit sequence is introduced. It provides a sufficient (and, for sequences of abelian groups, necessary) condition for the preservation of exactness by the inverse-limit functor. Examples of stable sequences are provided through the abstract Mittag-Leffler theorem; the results are applied in the theory of Fréchet algebras.
@article{bwmeta1.element.bwnjournal-article-smv121i3p277bwm, author = {Graham Allan}, title = {Stable inverse-limit sequences, with application to Predict algebras}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {277-308}, zbl = {0874.46048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i3p277bwm} }
Allan, Graham. Stable inverse-limit sequences, with application to Predict algebras. Studia Mathematica, Tome 119 (1996) pp. 277-308. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i3p277bwm/
[00000] [1] G. R. Allan, Embedding the algebra of formal power series in a Banach algebra, Proc. London Math. Soc. (3) 25 (1972), 329-340. | Zbl 0243.46059
[00001] [2] G. R. Allan, Fréchet algebras and formal power series, Studia Math. 119 (1996), 271-288. | Zbl 0858.46041
[00002] [3] R. F. Arens, A generalization of normed rings, Pacific J. Math. 2 (1952), 455-471. | Zbl 0047.35802
[00003] [4] R. F. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182. | Zbl 0087.31802
[00004] [5] N. Bourbaki, Théorie des ensembles, Hermann, Paris, 1970. | Zbl 0215.05101
[00005] [6] A. M. Davie, Homotopy in Fréchet algebras, Proc. London Math. Soc. (3) 23 (1971), 31-52. | Zbl 0218.46044
[00006] [7] S. Eilenberg and N. E. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, Princeton, N.J., 1952. | Zbl 0047.41402
[00007] [8] R. Engelking, General Topology, revised and completed edition, Heldermann, Berlin, 1989.
[00008] [9] J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monographs (N.S.) 10, Clarendon Press, Oxford, 1996. | Zbl 0855.47013
[00009] [10] J. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math. 32, Amer. Math. Soc., 1984, 107-129. | Zbl 0569.46031
[00010] [11] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, 1969. | Zbl 0213.40401
[00011] [12] R. Godement, Topologie algébrique et théorie des faisceaux, Publ. Inst. Math. Univ. Strasbourg XIII, Hermann, Paris, 1964. | Zbl 0080.16201
[00012] [13] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. | Zbl 0179.17001
[00013] [14] W. S. Massey, Homology and Cohomology Theory, Marcel Dekker, Basel, 1978.
[00014] [15] E. A. Michael, Locally multiplicatively convex topological algebras, Mem. Amer. Math. Soc. 11 (1953; third printing 1971).
[00015] [16] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. | Zbl 0114.39604
[00016] [17] R. Narasimhan, Complex Analysis in One Variable, Birkhäuser, Boston, 1985. | Zbl 0561.30001
[00017] [18] V. P. Palomodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1) (1971), 3-65 (in Russian); English transl.: Russian Math. Surveys 26 (1971), 1-64.
[00018] [19] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. | Zbl 0233.47024