Complex Unconditional Metric Approximation Property for CΛ() spaces
Li, Daniel
Studia Mathematica, Tome 119 (1996), p. 231-247 / Harvested from The Polish Digital Mathematics Library

We study the Complex Unconditional Metric Approximation Property for translation invariant spaces CΛ() of continuous functions on the circle group. We show that although some “tiny” (Sidon) sets do not have this property, there are “big” sets Λ for which CΛ() has (ℂ-UMAP); though these sets are such that LΛ() contains functions which are not continuous, we show that there is a linear invariant lifting from these LΛ() spaces into the Baire class 1 functions.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216354
@article{bwmeta1.element.bwnjournal-article-smv121i3p231bwm,
     author = {Daniel Li},
     title = {Complex Unconditional Metric Approximation Property for $C\_{$\Lambda$}()$ spaces},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {231-247},
     zbl = {0892.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i3p231bwm}
}
Li, Daniel. Complex Unconditional Metric Approximation Property for $C_{Λ}()$ spaces. Studia Mathematica, Tome 119 (1996) pp. 231-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i3p231bwm/

[00000] [1] G. F. Bachelis and S. E. Ebenstein, On Λ(p) sets, Pacific J. Math. 54 (1974), 35-38. | Zbl 0304.43013

[00001] [2] D. L. Cartwright, R. B. Howlett and J. R. McMullen, Extreme values for the Sidon constant, Proc. Amer. Math. Soc. 81 (1981), 531-537. | Zbl 0461.43011

[00002] [3] P. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, P. F. X. Müller and W. Schachermayer (eds)., London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63. | Zbl 0743.41027

[00003] [4] G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331. | Zbl 0661.43003

[00004] [5] G. Godefroy and N. J. Kalton, Commuting approximation properties, preprint.

[00005] [6] G. Godefroy, N. J. Kalton and D. Li, On subspaces of L1 which embed into 1, J. Reine Angew. Math. 471 (1996), 43-75.

[00006] [7] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. | Zbl 0814.46012

[00007] [8] G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263. | Zbl 0687.46010

[00008] [9] G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60/61 (1990), 443-456. | Zbl 0759.46019

[00009] [10] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1960. | Zbl 0086.25803

[00010] [11] S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111. | Zbl 0645.43004

[00011] [12] N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157. | Zbl 0496.10036

[00012] [13] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces Lp, Studia Math. 21 (1962), 161-176.

[00013] [14] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. | Zbl 0266.47038

[00014] [15] D. Li, On Hilbert sets and CΛ(G)-spaces with no subspace isomorphic to c0, Colloq. Math. 63 (1995), 67-77. | Zbl 0848.43006

[00015] [16] F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835. | Zbl 0324.43007

[00016] [17] F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans L(Γ), Studia Math. 69 (1981), 191-225. | Zbl 0476.43001

[00017] [18] Y. Meyer, Endomorphismes des idéaux fermés de L1(G), classes de Hardy et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968), 499-580. | Zbl 0169.18001

[00018] [19] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972. | Zbl 0267.43001

[00019] [20] A. Pełczyński, On commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531. | Zbl 0693.46044

[00020] [21] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108. | Zbl 0221.46014

[00021] [22] G. Pisier, Bases, suites lacunaires dans les espaces Lp d’après Kadec et Pełczyński, Sém. Maurey-Schwartz, exposé 18, Ecole Polytechnique, Paris, 1973.

[00022] [23] G. Pisier, Les inégalités de Khintchine-Kahane d'après C. Borell, Sém. Géométrie des Espaces de Banach 1977-1978, exposé VII, Ecole Polytechnique, Paris. | Zbl 0388.60013

[00023] [24] H. P. Rosenthal, On trigonometric series associated with weak* closed subspaces of continuous functions, J. Math. Mech. 17 (1967), 485-490. | Zbl 0194.16703

[00024] [25] W. Rudin, Trigonometric series with gaps, ibid. 9 (1960), 203-227. | Zbl 0091.05802

[00025] [26] W. Rudin, Lp-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228.