Sums of idempotents and a lemma of N. J. Kalton
Allan, Graham
Studia Mathematica, Tome 119 (1996), p. 185-192 / Harvested from The Polish Digital Mathematics Library

A lemma of Gelfand-Hille type is proved. It is used to give an improved version of a result of Kalton on sums of idempotents.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216350
@article{bwmeta1.element.bwnjournal-article-smv121i2p185bwm,
     author = {Graham Allan},
     title = {Sums of idempotents and a lemma of N. J. Kalton},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {185-192},
     zbl = {0862.46029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i2p185bwm}
}
Allan, Graham. Sums of idempotents and a lemma of N. J. Kalton. Studia Mathematica, Tome 119 (1996) pp. 185-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i2p185bwm/

[00000] [1] G. R. Allan, Power-bounded elements in a Banach algebra and a theorem of Gelfand, in: Conf. on Automatic Continuity and Banach Algebras (Canberra, January 1989), R. J. Loy (ed.), Proc. Centre Math. Anal. Austral. Nat. Univ. 21, Canberra, 1989, 1-12.

[00001] [2] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. | Zbl 0705.46021

[00002] [3] R. P. Boas, Entire Functions, Academic Press, New York, 1954. | Zbl 0058.30201

[00003] [4] H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217-229. | Zbl 0067.35002

[00004] [5] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. | Zbl 0207.44802

[00005] [6] J. Esterle, Quasi-multipliers, representations of H, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, Lecture Notes in Math. 975, Springer, 1983, 66-162.

[00006] [7] I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50. | Zbl 67.0407.02

[00007] [8] E. Hille, On the theory of characters of groups and semigroups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60. | Zbl 0061.25305

[00008] [9] N. J. Kalton, Sums of idempotents in Banach algebras, Canad. Math. Bull. 31 (1988), 448-451. | Zbl 0679.46033

[00009] [10] Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Funct. Anal. 68 (1986), 313-328. | Zbl 0611.47005

[00010] [11] G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698. | Zbl 0101.09503

[00011] [12] G. E. Shilov, On a theorem of I. M. Gel'fand and its generalizations, Dokl. Akad. Nauk SSSR 72 (1950), 641-644 (in Russian). | Zbl 0039.33601

[00012] [13] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci. Warszawa, 1994, 369-385. | Zbl 0822.47005