Let T be a semigroup of linear contractions on a Banach space X, and let . Then is the annihilator of the bounded trajectories of T*. If the unitary spectrum of T is countable, then is the annihilator of the unitary eigenvectors of T*, and for each x in X.
@article{bwmeta1.element.bwnjournal-article-smv121i2p167bwm, author = {Charles Batty and Zdzis\l aw Brze\'zniak and David Greenfield}, title = {A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {167-183}, zbl = {0862.47020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i2p167bwm} }
Batty, Charles; Brzeźniak, Zdzisław; Greenfield, David. A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum. Studia Mathematica, Tome 119 (1996) pp. 167-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i2p167bwm/
[00000] [1] W. Arendt, Gaussian estimates and interpolation of the spectrum in , Differential Integral Equations 7 (1994), 1153-1168. | Zbl 0827.35081
[00001] [2] W. Arendt and C. J. K. Batty, Tauberian theorms and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. | Zbl 0652.47022
[00002] [3] E. Balslev, The essential spectrum of elliptic differential operators in , ibid. 116 (1965), 193-217.
[00003] [4] C. J. K. Batty, Asymptotic stability of Schrödinger semigroups: path integral methods, Math. Ann. 292 (1992), 457-492. | Zbl 0736.35025
[00004] [5] C. J. K. Batty and D. A. Greenfield, On the invertibility of isometric semigroup representations, Studia Math. 110 (1994), 235-250. | Zbl 0803.47033
[00005] [6] C. J. K. Batty and Vũ Quôc Phóng, Stability of strongly continuous representations of abelian semigroups, Math. Z. 209 (1992), 75-88.
[00006] [7] Z. Brze/xniak and B. Szafirski, Asymptotic behaviour of norm of solutions to parabolic equations, Bull. Polish Acad. Sci. Math. 39 (1991), 1-10.
[00007] [8] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989. | Zbl 0699.35006
[00008] [9] E. B. Davies, Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995), 141-169. | Zbl 0839.35034
[00009] [10] E. B. Davies, Long time asymptotics of fourth order parabolic equations, J. Anal. Math., to appear. | Zbl 0851.35018
[00010] [11] R. G. Douglas, On extending commutative semigroups of operators, Bull. London Math. Soc. 1 (1969), 157-159. | Zbl 0187.06501
[00011] [12] J. Esterle, E. Strouse et F. Zouakia, Stabilité asymptotique de certains semigroupes d’opérateurs et idéaux primaires de , J. Operator Theory 28 (1992), 203-227.
[00012] [13] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. | Zbl 0144.34903
[00013] [14] D. Gilbarg and J. Serrin, On isolated singularities of solutions of second order elliptic differential equations, J. Anal. Math. 4 (1955-56), 309-340. | Zbl 0071.09701
[00014] [15] J.-P. Kahane et Y. Katznelson, Sur les algèbres de restrictions des séries de Taylor absolument convergentes à un fermé du cercle, ibid. 23 (1970), 185-197.
[00015] [16] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. | Zbl 0611.47005
[00016] [17] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. of Math. 72 (1960), 362-368. | Zbl 0094.05801
[00017] [18] Yu. I. Lyubich, Introduction to the Theory of Banach Representations of Groups, Birkhäuser, Basel, 1988.
[00018] [19] Yu. I. Lyubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), 37-42. | Zbl 0639.34050
[00019] [20] Yu. I. Lyubich and Vũ Quôc Phóng, A spectral criterion for the almost periodicity of one-parameter semigroups, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 47 (1987), 36-41 (in Russian).
[00020] [21] Yu. I. Lyubich and Vũ Quôc Phóng, A spectral criterion for asymptotic almost periodicity of uniformly continuous representations of abelian semigroups, ibid. 50 (1988), 38-43 (in Russian); English transl.: J. Soviet Math. 49 (1990), 1263-1266.
[00021] [22] Z. M. Ma and M. Röckner, An Introduction to the Theory of Non-Symmetric Dirichlet Forms, Springer, Berlin, 1992. | Zbl 0826.31001
[00022] [23] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. | Zbl 0111.09302
[00023] [24] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986. | Zbl 0585.47030
[00024] [25] J. van Neerven, The Asymptotic Behaviour of a Semigroup of Linear Operators, Birkhäuser, Basel, 1996. | Zbl 0905.47001
[00025] [26] E. M. Ouhabaz, -contractivity of semigroups generated by sectorial forms, J. London Math. Soc. 46 (1992), 529-542. | Zbl 0788.47034
[00026] [27] R. Hempel and J. Voigt, The spectrum of a Schrödinger operator in is p-independent, Comm. Math. Phys. 104 (1986), 243-250. | Zbl 0593.35033
[00027] [28] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London, 1979. | Zbl 0416.46043
[00028] [29] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, Berlin, 1984. | Zbl 0549.35002
[00029] [30] D. W. Robinson, Elliptic Operators and Lie Groups, Oxford Univ. Press, Oxford, 1991. | Zbl 0747.47030
[00030] [31] W. Rudin, Fourier Analysis on Groups, Wiley, New York, 1992.
[00031] [32] R. Rudnicki, Asymptotic stability in of parabolic equations, J. Differential Equations 102 (1993), 391-401. | Zbl 0815.35034
[00032] [33] M. Schechter, Spectra of Partial Differential Operators, North-Holland, Amsterdam, 1971. | Zbl 0225.35001
[00033] [34] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526. | Zbl 0524.35002
[00034] [35] Vũ Quôc Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), 74-84. | Zbl 0770.47017
[00035] [36] Vũ Quôc Phóng, On the spectrum, complete trajectories, and asymptotic stability of linear semi-dynamical systems, J. Differential Equations 105 (1993), 30-45.
[00036] [37] Vũ Quôc Phóng, Stability and almost periodicity of trajectories of periodic processes, ibid. 115 (1995), 402-415.