Let Γ be a closed set in with Lebesgue measure |Γ| = 0. The first aim of the paper is to give a Fourier analytical characterization of Hausdorff dimension of Γ. Let 0 < d < n. If there exist a Borel measure µ with supp µ ⊂ Γ and constants and such that for all 0 < r < 1 and all x ∈ Γ, where B(x,r) is a ball with centre x and radius r, then Γ is called a d-set. The second aim of the paper is to provide a link between the related Lebesgue spaces , 0 < p ≤ ∞, with respect to that measure µ on the hand and the Fourier analytically defined Besov spaces (s ∈ ℝ, 0 < p ≤ ∞, 0 < q ≤ ∞) on the other hand.
@article{bwmeta1.element.bwnjournal-article-smv121i2p149bwm, author = {Hans Triebel and Heike Winkelvoss}, title = {A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {149-166}, zbl = {0864.46020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i2p149bwm} }
Triebel, Hans; Winkelvoss, Heike. A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces. Studia Mathematica, Tome 119 (1996) pp. 149-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i2p149bwm/
[00000] [1] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, 1985. | Zbl 0587.28004
[00001] [2] K. J. Falconer, Fractal Geometry, Wiley, 1990.
[00002] [3] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. | Zbl 0551.46018
[00003] [4] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
[00004] [5] A. B. Gulisashvili, Traces of differentiable functions on subsets of the euclidean space, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149 (1986), 52-66 (in Russian). | Zbl 0606.46022
[00005] [6] A. Jonsson, Atomic decomposition of Besov spaces on closed sets, in: Function Spaces, Differential Operators and Non-Linear Analysis, Teubner-Texte Math. 133, Teubner, Leipzig, 1993, 285-289. | Zbl 0831.46028
[00006] [7] A. Jonsson, Besov spaces on closed sets by means of atomic decompositions, preprint, Umeå, 1993.
[00007] [8] A. Jonsson and H. Wallin, Function Spaces on Subsets of , Math. Reports 2, Part 1, Harwood Acad. Publ., London, 1984. | Zbl 0875.46003
[00008] [9] A. Jonsson and H. Wallin, The dual of Besov spaces on fractals, Studia Math. 112 (1995), 285-300. | Zbl 0831.46029
[00009] [10] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
[00010] [11] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
[00011] [12] H. Triebel and H. Winkelvoß, Intrinsic atomic characterizations of function spaces on domains, Math. Z. 221 (1996), 647-673. | Zbl 0843.46022
[00012] [13] H. Triebel and H. Winkelvoß, The dimension of a closed subset of and related function spaces, Acta Math. Hungar. 68 (1995), 117-133. | Zbl 0851.46028
[00013] [14] H. Winkelvoß, Function spaces related to fractals. Intrinsic atomic characterizations of function spaces on domains, Thesis, Jena, 1995. | Zbl 0880.46027