We show several theorems on uniform approximation of functions. Each of them is based on the choice of a special reproducing kernel in an appropriate Hilbert space. The theorems have a common generalization whose proof is founded on the idea of the Kaczmarz projection algorithm.
@article{bwmeta1.element.bwnjournal-article-smv121i2p105bwm, author = {Jan Mycielski and Stanis\l aw \'Swierczkowski}, title = {Uniform approximation with linear combinations of reproducing kernels}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {105-114}, zbl = {0864.41028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i2p105bwm} }
Mycielski, Jan; Świerczkowski, Stanisław. Uniform approximation with linear combinations of reproducing kernels. Studia Mathematica, Tome 119 (1996) pp. 105-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i2p105bwm/
[00000] [1] L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, Englewood Cliffs, N.J., 1968. | Zbl 0157.43301
[00001] [2] Y. Cenzer, Row-action methods for huge and sparse systems and their applications, SIAM Rev. 23 (1981), 444-466. | Zbl 0469.65037
[00002] [3] V. Faber and J. Mycielski, Applications of learning theorems, Fund. Inform. 15 (1991), 145-167. | Zbl 0764.68142
[00003] [4] G. B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. | Zbl 0682.43001
[00004] [5] S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Acad. Polon. Sci. Lett. A 35 (1937), 355-357. | Zbl 0017.31703
[00005] [6] J. Mycielski, Can mathematics explain natural intelligence?, Phys. D 22 (1986), 366-375. | Zbl 0611.92031
[00006] [7] J. Mycielski, A learning theorem for linear operators, Proc. Amer. Math. Soc. 103 (1988), 547-550. | Zbl 0653.41021
[00007] [8] J. Mycielski and S. Świerczkowski, A model of the neocortex, Adv. Appl. Math. 9 (1988), 465-480. | Zbl 0662.68087
[00008] [9] W. Rudin, Functional Analysis, McGraw-Hill, 1973.
[00009] [10] S. Saitoh, Theory of Reproducing Kernels and its Applications, Longman Sci. & Tech., Harlow, and Wiley, New York, 1988. | Zbl 0652.30003
[00010] [11] J. Stewart, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math. 6 (1976), 406-434. | Zbl 0337.42017
[00011] [12] N. Wiener, The Fourier Integral and Certain of its Applications, Cambridge Univ. Press, 1967, 1933. | Zbl 0006.05401
[00012] [13] K. Yosida, Functional Analysis, 5th ed., Springer, Berlin, 1980.