An uncertainty principle related to the Poisson summation formula
Gröchenig, K.
Studia Mathematica, Tome 119 (1996), p. 87-104 / Harvested from The Polish Digital Mathematics Library

We prove a class of uncertainty principles of the form Sgf1C(xafp+ωbf̂q), where Sgf is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216344
@article{bwmeta1.element.bwnjournal-article-smv121i1p87bwm,
     author = {K. Gr\"ochenig},
     title = {An uncertainty principle related to the Poisson summation formula},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {87-104},
     zbl = {0866.42005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i1p87bwm}
}
Gröchenig, K. An uncertainty principle related to the Poisson summation formula. Studia Mathematica, Tome 119 (1996) pp. 87-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i1p87bwm/

[00000] [1] J. J. Benedetto, Frame decompositions, sampling, and uncertainty principle inequalities, in: Wavelets: Mathematics and Applications, J. Benedetto and M. Frazier (eds.), CRC Press, Boca Raton, 1994, 247-304. | Zbl 1090.94516

[00001] [2] M. G. Cowling and J. F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984), 151-165.

[00002] [3] I. Daubechies, On the distributions corresponding to bounded operators in the Weyl quantization, Comm. Math. Phys. 75 (1980), 229-238. | Zbl 0451.47059

[00003] [4] D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), 906-931. | Zbl 0689.42001

[00004] [5] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. | Zbl 0526.35080

[00005] [6] H. G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), 269-289. | Zbl 0461.43003

[00006] [7] H. G. Feichtinger, Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens, C. R. Acad. Sci. Paris Sér. A 290 (1980), 791-794. | Zbl 0433.43002

[00007] [8] H. G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, Proc. Conf. "Constructive Function Theory", Edmonton, July 1986, Rocky Mountain J. Math. 19 (1989), 113-126.

[00008] [9] H. G. Feichtinger, personal communication.

[00009] [10] H. Feichtinger and K. Gröchenig, Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, in: Wavelets: A Tutorial in Theory and Applications, Ch. K. Chui (ed.), Academic Press, Boston, 1992, 359-397. | Zbl 0849.43003

[00010] [11] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989. | Zbl 0682.43001

[00011] [12] K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1-42. | Zbl 0736.42022

[00012] [13] C. Heil, J. Ramanathan and P. Topiwala, Singular values of compact pseudodifferential operators, preprint, 1995. | Zbl 0990.35139

[00013] [14] C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. | Zbl 0683.42031

[00014] [15] J.-P. Kahane, Sur les polynômes à coefficients unimodulaires, Bull. London Math. Soc. 12 (1980), 321-342.

[00015] [16] J.-P. Kahane et P. G. Lemarié-Rieusset, Remarques sur la formule sommatoire de Poisson, Studia Math. 109 (1994), 303-316.

[00016] [17] Y. Katznelson, Une remarque concernant la formule de Poisson, ibid. 29 (1967), 107-108. | Zbl 0169.39602

[00017] [18] E. Lieb, Integral bounds for radar ambiguity functions and Wigner distributions, J. Math. Phys. 31 (3) (1990), 594-599. | Zbl 0704.46050

[00018] [19] V. Losert, A characterization of the minimal strongly character invariant Segal algebra, Ann. Inst. Fourier (Grenoble) 30 (1980), 129-139. | Zbl 0425.43003

[00019] [20] J. F. Price, Inequalities and local uncertainty principles, J. Math. Phys. 24 (1983), 1711-1714. | Zbl 0513.60100

[00020] [21] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. | Zbl 0821.42001