Let T be a power-bounded linear operator in a real Banach space X. We study the equality (*) . For X separable, we show that if T satisfies and is not uniformly ergodic, then contains an isomorphic copy of an infinite-dimensional dual Banach space. Consequently, if X is separable and does not contain isomorphic copies of infinite-dimensional dual Banach spaces, then (*) is equivalent to uniform ergodicity. As an application, sufficient conditions for uniform ergodicity of irreducible Markov chains on the (positive) integers are obtained.
@article{bwmeta1.element.bwnjournal-article-smv121i1p67bwm, author = {Vladimir Fonf and Michael Lin and Alexander Rubinov}, title = {On the uniform ergodic theorem in Banach spaces that do not contain duals}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {67-85}, zbl = {0861.47006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i1p67bwm} }
Fonf, Vladimir; Lin, Michael; Rubinov, Alexander. On the uniform ergodic theorem in Banach spaces that do not contain duals. Studia Mathematica, Tome 119 (1996) pp. 67-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i1p67bwm/
[00000] [BP] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. | Zbl 0084.09805
[00001] [BoR] J. Bourgain and H. Rosenthal, Applications of the theory of semi-embeddings to Banach space theory, J. Funct. Anal. 52 (1983), 149-188. | Zbl 0541.46020
[00002] [BrSu_1] A. Brunel et L. Sucheston, Sur quelques conditions équivalentes à la super-reflexivité dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. A 275 (1972), 993-994. | Zbl 0245.46016
[00003] [BrSu_2] A. Brunel et L. Sucheston, On B-convex Banach spaces, Math. Systems Theory 7 (1974), 294-299.
[00004] [BuW] P. Butzer and U. Westphal, Ein Operatorenkalkül für das approximationstheoretische Verhalten des Ergodensatzes im Mittel, in: Linear Operators and Approximation, P. Butzer, J.-P. Kahane and B. Sz.-Nagy (eds.), Birkhäuser, Basel, 1972, 102-114.
[00005] [Da] W. J. Davis, Separable Banach spaces with only trivial isometries, Rev. Roumaine Math. Pures Appl. 16 (1971), 1051-1054. | Zbl 0222.46016
[00006] [D] M. Day, Normed Linear Spaces, 3rd ed., Springer, Berlin, 1973. | Zbl 0268.46013
[00007] [DuSc] N. Dunford and J. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
[00008] [F_1] V. Fonf, One property of Lindenstrauss-Phelps spaces, Funct. Anal. Appl. 13 (1979), 66-67. | Zbl 0426.46012
[00009] [F_2] V. Fonf, Injections of Banach spaces with closed image of the unit ball, ibid. 19 (1985), 75-77. | Zbl 0582.46017
[00010] [F_3] V. Fonf, Dual subspaces and injections of Banach spaces, Ukrainian Math. J. 39 (1987), 285-289. | Zbl 0633.46014
[00011] [F4] V. Fonf, On semi-embeddings and embeddings of Banach spaces, Mat. Zametki 39 (1986), 550-561 (in Russian); English transl. in Math. Notes 39 (1986).
[00012] [GHe] W. Gottschalk and G. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 36, Providence, 1955. | Zbl 0067.15204
[00013] [Ho] S. Horowitz, Transition probabilities and contractions of , Z. Wahrsch. Verw. Gebiete 24 (1972), 263-274. | Zbl 0228.60028
[00014] [KoL] I. Kornfeld and M. Lin, Coboundaries of irreducible Markov operators on C(K), Israel J. Math., to appear. | Zbl 0901.47020
[00015] [K] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, de Gruyter, Berlin, 1985.
[00016] [KL] U. Krengel and M. Lin, On the range of the generator of a Markovian semi-group, Math. Z. 185 (1984), 553-565. | Zbl 0525.60080
[00017] [L_1] M. Lin, On quasi-compact Markov operators, Ann. of Probab. 2 (1974), 464-475. | Zbl 0285.28019
[00018] [L_2] M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337-340. | Zbl 0252.47004
[00019] [L_3] M. Lin, Quasi-compactness and uniform ergodicity of positive operators, Israel J. Math. 29 (1978), 309-311. | Zbl 0374.47015
[00020] [LS] M. Lin and R. Sine, Ergodic theory and the functional equation (I-T)x=y, J. Operator Theory 10 (1983), 153-166. | Zbl 0553.47006
[00021] [Loe] M. Loève, Probability Theory, 3rd ed., van Nostrand-Reinhold, New York, 1963.
[00022] [Lo] H. Lotz, Uniform convergence of operators on and similar spaces, Math. Z. 190 (1985), 207-220. | Zbl 0623.47033
[00023] [LPP] H. Lotz, N. Peck, and H. Porta, Semi-embeddings of Banach spaces, Proc. Edinburgh Math. Soc. 22 (1979), 233-240. | Zbl 0405.46013
[00024] [M] A. Milyutin, Isomorphy of the spaces of continuous functions on metric compacta of cardinality , Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 2 (1966), 150-156 (in Russian).
[00025] [P] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Rozprawy Mat. 58 (1968). | Zbl 0165.14603
[00026] [R] A. Rubinov, Sublinear operators and their applications, Uspekhi Mat. Nauk 32 (4) (1977), 115-175 (in Russian); English transl.: Russian Math. Surveys 32 (4) (1977), 113-174.
[00027] [Si] I. Singer, Bases in Banach Spaces II, Springer, Berlin, 1981.
[00028] [Su] L. Sucheston, Problems, in: Probability in Banach Spaces, Lecture Notes in Math. 526, Springer, 1976, 285-290.
[00029] [YH] K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66. | Zbl 0046.05401
[00030] [YKa] K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Ann. of Math. (2) 42 (1941), 188-228. | Zbl 0024.32402
[00031] [W] R. Wittmann, Schwach irreduzible Markoff-Operatoren, Monatsh. Math. 105 (1988), 319-334.
[00032] [Z] R. Zaharopol, Mean ergodicity of power-bounded operators in countably order complete Banach lattices, Math. Z. 192 (1986), 81-88. | Zbl 0575.47027