Köthe spaces modeled on spaces of C functions
Kocatepe, Mefharet ; Zahariuta, Viacheslav
Studia Mathematica, Tome 119 (1996), p. 1-14 / Harvested from The Polish Digital Mathematics Library

The isomorphic classification problem for the Köthe models of some C function spaces is considered. By making use of some interpolative neighborhoods which are related to the linear topological invariant Dφ and other invariants related to the “quantity” characteristics of the space, a necessary condition for the isomorphism of two such spaces is proved. As applications, it is shown that some pairs of spaces which have the same interpolation property Dφ are not isomorphic.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216340
@article{bwmeta1.element.bwnjournal-article-smv121i1p1bwm,
     author = {Mefharet Kocatepe and Viacheslav Zahariuta},
     title = {K\"othe spaces modeled on spaces of $C^$\infty$$ functions},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {1-14},
     zbl = {0863.46005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i1p1bwm}
}
Kocatepe, Mefharet; Zahariuta, Viacheslav. Köthe spaces modeled on spaces of $C^∞$ functions. Studia Mathematica, Tome 119 (1996) pp. 1-14. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i1p1bwm/

[00000] [1] H. Apiola, Characterization of subspaces and quotients of nuclear Lf(α,)-spaces, Compositio Math. 50 (1983), 65-81. | Zbl 0528.46003

[00001] [2] C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. 9 (1961), 677-683. | Zbl 0109.33502

[00002] [3] P. B. Djakov and V. P. Zahariuta, On Dragilev type power spaces, preprint. | Zbl 0864.46003

[00003] [4] I. M. Gelfand, On some problems of functional analysis, Uspekhi Mat. Nauk 11 (6) (1956), 3-12 (in Russian).

[00004] [5] A. P. Goncharov, Isomorphic classifications of spaces of infinitely differentiable functions, dissertation, Rostov University, 1986 (in Russian).

[00005] [6] A. P. Goncharov and V. P. Zahariuta, Linear topological invariants and spaces of infinitely differentiable functions, Mat. Anal. i ego Prilozhen., Rostov State University, 1985, 18-27 (in Russian).

[00006] [7] A. P. Goncharov and V. P. Zahariuta, On the existence of bases in spaces of Whitney functions on special compact sets in ℝ, preprint.

[00007] [8] A. N. Kolmogorov, On the linear dimension of topological vector spaces, Dokl. Akad. Nauk SSSR 120 (1958), 239-341 (in Russian).

[00008] [9] V. P. Kondakov and V. P. Zahariuta, On bases in spaces of infinitely differentiable functions on special domains with cusp, Note Mat. 12 (1992), 99-106. | Zbl 0844.46003

[00009] [10] B. S. Mityagin, Approximate dimension and bases in nuclear spaces, Russian Math. Surveys 16 (4) (1961), 59-127. | Zbl 0104.08601

[00010] [11] B. S. Mityagin, Sur l'équivalence des bases inconditionnelles dans les échelles de Hilbert, C. R. Acad. Sci. Paris 269 (1969), 426-428. | Zbl 0186.44704

[00011] [12] B. S. Mityagin, The equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian). | Zbl 0215.19502

[00012] [13] B. S. Mityagin, Non-Schwartzian power series spaces, Math. Z. 182 (1983), 303-310. | Zbl 0541.46007

[00013] [14] A. Pełczyński, On the approximation of S-spaces by finite-dimensional spaces, Bull. Acad. Polon. Sci. 5 (1957), 879-881. | Zbl 0078.28703

[00014] [15] M. Tidten, An example of a continuum of pairwise non-isomorphic spaces of C functions, Studia Math. 78 (1984), 267-274. | Zbl 0599.46028

[00015] [16] D. Vogt, Some results on continuous linear maps between Fréchet spaces, in: Functional Analysis: Surveys and Recent Results III, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 90, North-Holland, 1984, 349-381.

[00016] [17] V. P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, Mat. Anal. i ego Prilozhen., Rostov Univ. 2 (1970), 3-13, 3 (1971), 176-180 (in Russian).

[00017] [18] V. P. Zahariuta, Generalized Mityagin invariants and a continuum of pairwise nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (3) (1977), 24-30 (in Russian).

[00018] [19] V. P. Zahariuta, Synthetic diameters and linear topological invariants, in: School on Theory of Operators in Functional Spaces (abstracts of reports), Minsk, 1978, 51-52 (in Russian).

[00019] [20] V. P. Zahariuta, On isomorphic classification of F-spaces, in: Linear and Complex Analysis Problem Book, 199 Research Problems, Lecture Notes in Math. 1043, Springer, 1984, 34-37.

[00020] [21] V. P. Zahariuta, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996), 237-289. | Zbl 0866.46005