Stochastic continuity and approximation
Brown, Leon ; Schreiber, Bertram
Studia Mathematica, Tome 119 (1996), p. 15-33 / Harvested from The Polish Digital Mathematics Library

This work is concerned with the study of stochastic processes which are continuous in probability, over various parameter spaces, from the point of view of approximation and extension. A stochastic version of the classical theorem of Mergelyan on polynomial approximation is shown to be valid for subsets of the plane whose boundaries are sets of rational approximation. In a similar vein, one can obtain a version in the context of continuity in probability of the theorem of Arakelyan on the uniform approximation of continuous functions on a closed set by entire functions. Locally bounded processes continuous in probability are characterized via operators from L1-spaces to spaces of continuous functions. This characterization is utilized in a discussion of the problem of extension of the parameter space.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216339
@article{bwmeta1.element.bwnjournal-article-smv121i1p15bwm,
     author = {Leon Brown and Bertram Schreiber},
     title = {Stochastic continuity and approximation},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {15-33},
     zbl = {0865.60032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i1p15bwm}
}
Brown, Leon; Schreiber, Bertram. Stochastic continuity and approximation. Studia Mathematica, Tome 119 (1996) pp. 15-33. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i1p15bwm/

[00000] [1] Andrus, G. F., and Nishiura, T., Stochastic approximation of random functions, Rend. Mat. (6) 13 (1980), 593-615. | Zbl 0486.60060

[00001] [2] Arakelyan, N. V., Uniform approximation on closed sets by entire functions, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1187-1206 (in Russian). | Zbl 0143.29602

[00002] [3] Arens, R., Extension of functions on fully normal spaces, Pacific J. Math. 2 (1952), 11-22. | Zbl 0046.11801

[00003] [4] Blanc-Lapierre, A., and Fortet (transl. by J. Gani), R., Theory of Random Functions, Vol. 1, Gordon and Breach, New York, 1965.

[00004] [5] Brown, L., and Schreiber, B. M., Approximation and extension of random functions, Monatsh. Math. 107 (1989), 111-123. | Zbl 0687.60001

[00005] [6] Diestel, J., and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.

[00006] [7] Doob, J. L., Stochastic Processes, Wiley, New York, 1953. | Zbl 0053.26802

[00007] [8] Dugué, D., Traité de statistique théorique et appliquée: analyse aléatoire, algèbre aléatoire, Masson, Paris, 1958. | Zbl 0084.14305

[00008] [9] Dugundji, J., An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. | Zbl 0043.38105

[00009] [10] Dugundji, Topology, Allyn and Bacon, Boston, 1966.

[00010] [11] Fan, K., Sur l'approximation et l'intégration des fonctions aléatoires, Bull. Soc. Math. France 72 (1944), 97-117. | Zbl 0060.28808

[00011] [12] Fedorchuk, V. V., The fundamentals of dimension theory, in: General Topology I, A. V. Arkhangel'skiĭ and L. S. Pontryagin (eds.), Encyclopaedia Math. Sci. 17, Springer, Berlin, 1990, 91-192.

[00012] [13] Fernique, X., Les fonctions aléatoires cadlag, la compacité de leurs lois, Liet. Mat. Rink. 34 (1994), 288-306.

[00013] [14] Gamelin, T. W., Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. | Zbl 0213.40401

[00014] [15] Getoor, R. K., The Brownian escape process, Ann. Probab. 7 (1979), 864-867. | Zbl 0416.60086

[00015] [16] Gikhman, I. I., and Skorokhod, A. V., Introduction to the Theory of Random Processes, Saunders, Philadelphia, Penn., 1969.

[00016] [17] Himmelberg, C. J., Measurable relations, Fund. Math. 87 (1975), 53-72. | Zbl 0296.28003

[00017] [18] Istrătescu, V. I., and Onicescu, O., Approximation theorems for random functions, Rend. Mat. (6) 8 (1975), 65-81. | Zbl 0308.60037

[00018] [19] Kakutani, S., Simultaneous extension of continuous functions considered as a positive linear operation, Japan. J. Math. 17 (1940), 1-4. | Zbl 0023.39603

[00019] [20] Kelley, J. L., General Topology, Van Nostrand, New York, 1955.

[00020] [21] Mergelyan, S. N., Uniform approximations of functions of a complex variable, Uspekhi Mat. Nauk 7 (2 (48)) (1952), 31-122 (in Russian); English transl.: Amer. Math. Soc. Transl. 101 (1954). | Zbl 0059.05902

[00021] [22] Michael, E., Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789-806. | Zbl 0052.11502

[00022] [23] Pełczyński, A., On simultaneous extension of continuous functions, Studia Math. 24 (1964), 285-304; Supplement: Studia Math. 25 (1964), 157-161. | Zbl 0145.16204

[00023] [24] Pełczyński, Linear extensions, linear averagings, and their application to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968). | Zbl 0165.14603

[00024] [25] Rudin, W., Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.

[00025] [26] Runge, C., Zur Theorie der eindeutigen analytischen Funktionen, Acta Math. 6 (1885), 229-244.

[00026] [27] Semadeni, Z., Simultaneous Extensions and Projections in Spaces of Continuous Functions, Lecture Notes, Aarhus Univ., May 1965. | Zbl 0239.46048

[00027] [28] Syski, R., Stochastic processes, in: Encyclopedia Statist. Sci. 8, S. Kotz and N. L. Johnson (eds.), Wiley-Interscience, New York, 1988, 836-851.

[00028] [29] Vitushkin, A. G., Conditions on a set which are necessary and sufficient in order that any continuous function, analytic at its interior points, admit uniform approximation by rational fractions, Soviet Math. Dokl. 7 (1966), 1622-1625. | Zbl 0162.09702

[00029] [30] Vitushkin, Analytic capacity of sets in problems of approximation theory, Russian Math. Surveys 22 (1967), 139-200. | Zbl 0164.37701

[00030] [31] Zalcman, L., Analytic Capacity and Rational Approximation, Lecture Notes in Math. 50, Springer, Berlin, 1968. | Zbl 0171.03701