Acyclic inductive spectra of Fréchet spaces
Wengenroth, Jochen
Studia Mathematica, Tome 119 (1996), p. 247-258 / Harvested from The Polish Digital Mathematics Library

We provide new characterizations of acyclic inductive spectra of Fréchet spaces which improve the classical theorem of Palamodov and Retakh. It turns out that acyclicity, sequential retractivity (defined by Floret) and further strong regularity conditions (introduced e.g. by Bierstedt and Meise) are all equivalent. This solves a problem that was folklore since around 1970. For inductive limits of Fréchet-Montel spaces we obtain even stronger results, in particular, Grothendieck's problem whether regular (LF)-spaces are complete has a positive solution in this case and we show that even the weakest regularity conditions already imply acyclicity. One of the main benefits from our results is an improvement in the theory of projective spectra of (DFM)-spaces. We prove the missing implication in a theorem of Vogt and thus obtain evaluable conditions for vanishing of the derived projective limit functor which have direct applications to classical problems of analysis like surjectivity of partial differential operators on various classes of ultradifferentiable functions (as was explained e.g. by Braun, Meise and Vogt).

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216335
@article{bwmeta1.element.bwnjournal-article-smv120i3p247bwm,
     author = {Jochen Wengenroth},
     title = {Acyclic inductive spectra of Fr\'echet spaces},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {247-258},
     zbl = {0863.46002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i3p247bwm}
}
Wengenroth, Jochen. Acyclic inductive spectra of Fréchet spaces. Studia Mathematica, Tome 119 (1996) pp. 247-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i3p247bwm/

[00000] [1] K. D. Bierstedt, An introduction to locally convex inductive limits, in: Functional Analysis and Applications, Nice 1986, World Sci., Singapore, 1988, 35-133. | Zbl 0786.46001

[00001] [2] K. D. Bierstedt and J. Bonet, Weighted inductive limits of continuous functions, Math. Nachr. 165 (1994), 25-48. | Zbl 0839.46015

[00002] [3] K. D. Bierstedt and R. Meise, Bemerkungen über die Approximationseigenschaft lokalkonvexer Funktionenräume, Math. Ann. 209 (1974), 99-107. | Zbl 0267.46015

[00003] [4] J. Bonet and C. Fernández, Bounded sets in (LF)-spaces, Proc. Amer. Math. Soc. 123 (1995), 3717-3721. | Zbl 0842.46003

[00004] [5] R. W. Braun, Surjectivity of partial differential operators on Gevrey classes, in: Functional Analysis, Proceedings of the First Workshop at Trier University, S. Dierolf, S. Dineen and P. Domański (eds.), de Gruyter, to appear. | Zbl 1085.35501

[00005] [6] R. W. Braun, R. Meise and D. Vogt, Applications of the projective limit functor to convolutions and partial differential equations, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer, Dordrecht, 1989, 22-46.

[00006] [7] R. W. Braun, R. Meise and D. Vogt, Existence of fundamental solutions and surjectivity of convolution operators on classes of ultradifferentiable functions, Proc. London Math. Soc. 61 (1990), 344-370. | Zbl 0699.46021

[00007] [8] R. W. Braun, R. Meise and D. Vogt, Characterization of the linear partial differential operators with constant coefficients which are surjective on quasianalytic classes of Roumieu type on N, Math. Nachr. 168 (1994), 19-54. | Zbl 0848.35023

[00008] [9] B. Cascales and J. Orihuela, Metrizability of precompact subsets in (LF)-spaces, Proc. Roy. Soc. Edinburgh Sect. A 103 (1986), 293-299. | Zbl 0622.46005

[00009] [10] C. Fernández, Regularity conditions on (LF)-spaces, Arch. Math. (Basel) 54 (1990), 380-383. | Zbl 0669.46003

[00010] [11] K. Floret, Bases in sequentially retractive limit spaces, Studia Math. 38 (1970), 221-226. | Zbl 0203.11704

[00011] [12] K. Floret, Folgenretraktive Sequenzen lokalkonvexer Räume, J. Reine Angew. Math. 259 (1973), 65-85.

[00012] [13] K. Floret, Some aspects of the theory of locally convex inductive limits, in: Functional Analysis: Surveys and Recent Results II, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 38, North-Holland, Amsterdam, 1980, 205-237.

[00013] [14] L. Frerick, A splitting theorem for nuclear Fréchet spaces, in: Functional Analysis, Proceedings of the first Workshop at Trier University, S. Dierolf, S. Dineen and P. Domański (eds.), de Gruyter, to appear. | Zbl 0908.46001

[00014] [15] L. Frerick and J. Wengenroth, A sufficient condition for vanishing of the derived projective limit functor, Arch. Math. (Basel), to appear. | Zbl 0859.46046

[00015] [16] A. Grothendieck, Produits tensorielles topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).

[00016] [17] L. Hörmander, On the range of convolution operators, Ann. of Math. 76 (1962), 148-170. | Zbl 0109.08501

[00017] [18] L. Hörmander, On the existence of real analytic solutions of partial differential operators with constant coefficients, Invent. Math. 21 (1973), 152-182. | Zbl 0282.35015

[00018] [19] H. Neus, Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen, Manuscripta Math. 25 (1978), 135-145. | Zbl 0389.46058

[00019] [20] V. P. Palamodov, The projective limit functor in the category of linear topological spaces, Mat. Sb. 75 (1968), 567-603 (in Russian); English transl.: Math. USSR-Sb. 4 (1968), 529-558. | Zbl 0175.41801

[00020] [21] V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1) (1971), 3-65 (in Russian); English transl.: Russian Math. Surveys 26 (1971), 1-64.

[00021] [22] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, North-Holland, 1987. | Zbl 0614.46001

[00022] [23] V. S. Retakh, Subspaces of a countable inductive limit, Dokl. Akad. Nauk SSSR 194 (1970), 1277-1279 (in Russian); English transl.: Soviet Math. Dokl. 11 (1970), 1384-1386. | Zbl 0213.12504

[00023] [24] W. Roelcke, On the finest locally convex topology agreeing with a given topology on sequence of absolutely convex sets, Math. Ann. 198 (1972), 57-80. | Zbl 0226.46008

[00024] [25] M. Valdivia, Topics in Locally Convex Spaces, North-Holland Math. Stud. 67, North-Holland, 1982. | Zbl 0489.46001

[00025] [26] D. Vogt, On the functors Ext1(E,F) for Fréchet spaces, Studia Math. 85 (1987), 163-197. | Zbl 0651.46001

[00026] [27] D. Vogt, Lectures on projective spectra of (DF)-spaces, Seminar lectures, AG Funktionalanalysis Düsseldorf/Wuppertal, 1987.

[00027] [28] D. Vogt, Topics on projective spectra of (LB)-spaces, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer, Dordrecht, 1989, 11-27.

[00028] [29] D. Vogt, Regularity properties of (LF)-spaces, in: Progress in Functional Analysis, North-Holland Math. Stud. 170, North-Holland, 1992, 57-84. | Zbl 0779.46005

[00029] [30] J. Wengenroth, Retractive (LF)-spaces, Dissertation, Universität Trier, 1995. | Zbl 0974.46500