Absolute continuity for elliptic-caloric measures
Sweezy, Caroline
Studia Mathematica, Tome 119 (1996), p. 95-112 / Harvested from The Polish Digital Mathematics Library

A Carleson condition on the difference function for the coefficients of two elliptic-caloric operators is shown to give absolute continuity of one measure with respect to the other on the lateral boundary. The elliptic operators can have time dependent coefficients and only one of them is assumed to have a measure which is doubling. This theorem is an extension of a result of B. Dahlberg [4] on absolute continuity for elliptic measures to the case of the heat equation. The method of proof is an adaptation of Fefferman, Kenig and Pipher's proof of Dahlberg's result [8].

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216330
@article{bwmeta1.element.bwnjournal-article-smv120i2p95bwm,
     author = {Caroline Sweezy},
     title = {Absolute continuity for elliptic-caloric measures},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {95-112},
     zbl = {0865.35059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i2p95bwm}
}
Sweezy, Caroline. Absolute continuity for elliptic-caloric measures. Studia Mathematica, Tome 119 (1996) pp. 95-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i2p95bwm/

[00000] [1] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa 22 (1968), 607-694. | Zbl 0182.13802

[00001] [2] A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions, II, Proc. Cambridge Philos. Soc. 42 (1946), 1-10. | Zbl 0063.00353

[00002] [3] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. | Zbl 0291.44007

[00003] [4] B. E. J. Dahlberg, On the absolute continuity of elliptic measures, Amer. J. Math. 108 (1986), 1119-1138. | Zbl 0644.35032

[00004] [5] B. E. J. Dahlberg, D. S. Jerison, and C. E. Kenig, Area integral estimates for elliptic differential operators with non-smooth coefficients, Ark. Mat. 22 (1984), 97-108. | Zbl 0537.35025

[00005] [6] J. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer, 1984.

[00006] [7] E. Fabes, N. Garofalo, and S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 20 (1986), 536-565. | Zbl 0625.35006

[00007] [8] R. Fefferman, C. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65-124. | Zbl 0770.35014

[00008] [9] Y. Heurteaux, Inégalités de Harnack à la frontière pour des opérateurs paraboliques, C. R. Acad. Sci. Paris Sér. I 308 (1989), 401-404, 441-444.

[00009] [10] C. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, preprint.

[00010] [11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | Zbl 0207.13501

[00011] [12] C. Sweezy, Fatou theorems for parabolic equations, Proc. Amer. Math. Soc., to appear. | Zbl 0857.35052