Let ũ denote the conjugate Poisson integral of a function . We give conditions on a region Ω so that , the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that is a bounded operator on , 1 < p < ∞, and is weak (1,1).
@article{bwmeta1.element.bwnjournal-article-smv120i2p169bwm, author = {S. Ferrando and R. Jones and K. Reinhold}, title = {On approach regions for the conjugate Poisson integral and singular integrals}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {169-182}, zbl = {0862.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i2p169bwm} }
Ferrando, S.; Jones, R.; Reinhold, K. On approach regions for the conjugate Poisson integral and singular integrals. Studia Mathematica, Tome 119 (1996) pp. 169-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i2p169bwm/
[00000] [1] M. A. Akcoglu and Y. Déniel, Moving weighted averages, Canad. J. Math. 45 (1993), 449-469.
[00001] [2] A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353. | Zbl 0185.21806
[00002] [3] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400. | Zbl 37.0283.01
[00003] [4] S. Ferrando, Moving ergodic theorems for superadditive processes, Ph.D. thesis, Univ. of Toronto, 1994. | Zbl 0837.28013
[00004] [5] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. Math. 54 (1984), 83-106. | Zbl 0546.42017
[00005] [6] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[00006] [7] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1993.