We give an elementary proof for the uniqueness of absolutely continuous invariant measures for expanding random dynamical systems and study their mixing properties.
@article{bwmeta1.element.bwnjournal-article-smv120i2p159bwm, author = {Thomas Bogensch\"utz and Zbigniew Kowalski}, title = {Exactness of skew products with expanding fibre maps}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {159-168}, zbl = {0864.58033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i2p159bwm} }
Bogenschütz, Thomas; Kowalski, Zbigniew. Exactness of skew products with expanding fibre maps. Studia Mathematica, Tome 119 (1996) pp. 159-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i2p159bwm/
[00000] [Die84] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
[00001] [Kif92] Y. Kifer, Equilibrium states for random expanding transformations, Random Comput. Dynamics 1 (1992), 1-31.
[00002] [KK94] K. Khanin and Y. Kifer, Thermodynamic formalism for random transformations and statistical mechanics, preprint, 1994.
[00003] [Kre85] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
[00004] [KS69] K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. | Zbl 0176.00901
[00005] [Las80] A. Lasota, A fixed point theorem and its application in ergodic theory, Tôhoku Math. J. 32 (1980), 567-575.
[00006] [LM94] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Appl. Math. Sci. 97, Springer, New York, 1994 (rev. ed. of: Probabilistic Properties of Deterministic Systems, 1985).
[00007] [Mor85] T. Morita, Asymptotic behavior of one-dimensional random dynamical systems, J. Math. Soc. Japan 37 (1985), 651-663. | Zbl 0587.58027
[00008] [Roh64] V. A. Rohlin [V. A. Rokhlin], Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. Ser. 2 39 (1964), 1-36. | Zbl 0154.15703