Using the holomorphic functional calculus we give a characterization of idempotent elements commuting with a given element in a Banach algebra.
@article{bwmeta1.element.bwnjournal-article-smv120i2p155bwm, author = {M. Berkani}, title = {Idempotents dans les alg\`ebres de Banach}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {155-158}, zbl = {0865.46032}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i2p155bwm} }
Berkani, M. Idempotents dans les algèbres de Banach. Studia Mathematica, Tome 119 (1996) pp. 155-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i2p155bwm/
[00000] [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039
[00001] [2] G. N. Hile and W. E. Pfaffenberger, Generalized spectral theory in complex Banach algebras, Canad. J. Math. 37 (1985), 1211-1236. | Zbl 0574.46038
[00002] [3] G. N. Hile and W. E. Pfaffenberger, Idempotents in complex Banach algebras, ibid. 39 (1987), 625-630. | Zbl 0619.46045
[00003] [4] A. M. Sinclair, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. | Zbl 0242.46035