K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.
@article{bwmeta1.element.bwnjournal-article-smv120i1p75bwm, author = {Szymon W\k asowicz}, title = {Polynomial selections and separation by polynomials}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {75-82}, zbl = {0887.26007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p75bwm} }
Wąsowicz, Szymon. Polynomial selections and separation by polynomials. Studia Mathematica, Tome 119 (1996) pp. 75-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p75bwm/
[00000] [1] E. Behrends and K. Nikodem, A selection theorem of Helly type and its applications, Studia Math. 116 (1995), 43-48. | Zbl 0847.52004
[00001] [2] Z. Ciesielski, Some properties of convex functions of higher orders, Ann. Polon. Math. 7 (1959), 1-7. | Zbl 0128.05704
[00002] [3] K. Nikodem and S. Wąsowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160-164. | Zbl 0815.39010
[00003] [4] T. Popoviciu, Les Fonctions Convexes, Hermann, Paris, 1944. | Zbl 0060.14911
[00004] [5] T. Popoviciu, Sur quelques propriétés des fonctions d'une variable réelle convexes d'ordre supérieur, Mathematica (Cluj) 8 (1934), 1-85. | Zbl 0009.05901
[00005] [6] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973. | Zbl 0271.26009
[00006] [7] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964.
[00007] [8] S. Wąsowicz, On affine selections of set-valued functions, J. Appl. Anal. 1 (1995), 173-179.