We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces , where G is a homogeneous group.
@article{bwmeta1.element.bwnjournal-article-smv120i1p53bwm, author = {Chin-Cheng Lin}, title = {Convolution operators on Hardy spaces}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {53-59}, zbl = {0882.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p53bwm} }
Lin, Chin-Cheng. Convolution operators on Hardy spaces. Studia Mathematica, Tome 119 (1996) pp. 53-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p53bwm/
[00000] [CW1] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
[00001] [CW2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[00002] [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, N.J., 1982. | Zbl 0508.42025
[00003] [HJTW] Y. Han, B. Jawerth, M. Taibleson, and G. Weiss, Littlewood-Paley theory and ϵ-families of operators, Colloq. Math. 60//61 (1990), 321-359. | Zbl 0763.46024
[00004] [L] C.-C. Lin, multipliers and their - estimates on the Heisenberg group, Rev. Mat. Iberoamericana 11 (1995), 269-308.
[00005] [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[00006] [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. | Zbl 0472.46041