Let A be a complex unital Banach algebra. We characterize elements belonging to Γ(A), the set of elements central modulo the radical. Our result extends and unifies several known characterizations of elements in Γ(A).
@article{bwmeta1.element.bwnjournal-article-smv120i1p47bwm, author = {Matej Bre\v sar and Peter \v Semrl}, title = {Spectral characterizations of central elements in Banach algebras}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {47-52}, zbl = {0868.46036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p47bwm} }
Brešar, Matej; Šemrl, Peter. Spectral characterizations of central elements in Banach algebras. Studia Mathematica, Tome 119 (1996) pp. 47-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p47bwm/
[00000] [1] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
[00001] [2] M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162. | Zbl 0818.46049
[00002] [3] R. E. Curto and M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434. | Zbl 0822.47034
[00003] [4] S. Grabiner, The spectral diameter in Banach algebras, ibid. 91 (1984), 59-63. | Zbl 0562.46028
[00004] [5] M. Mathieu, Where to find the image of a derivation, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1994, 237-249.
[00005] [6] V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362. | Zbl 0376.46031
[00006] [7] V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211. | Zbl 0407.46043
[00007] [8] J. Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183. | Zbl 0429.46029
[00008] [9] J. Zemánek, Properties of the spectral radius in Banach algebras, in: Spectral Theory, Banach Center Publ. 8, PWN-Polish Scientific Publ., Warszawa, 1982, 579-595.