Spectral characterizations of central elements in Banach algebras
Brešar, Matej ; Šemrl, Peter
Studia Mathematica, Tome 119 (1996), p. 47-52 / Harvested from The Polish Digital Mathematics Library

Let A be a complex unital Banach algebra. We characterize elements belonging to Γ(A), the set of elements central modulo the radical. Our result extends and unifies several known characterizations of elements in Γ(A).

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216319
@article{bwmeta1.element.bwnjournal-article-smv120i1p47bwm,
     author = {Matej Bre\v sar and Peter \v Semrl},
     title = {Spectral characterizations of central elements in Banach algebras},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {47-52},
     zbl = {0868.46036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p47bwm}
}
Brešar, Matej; Šemrl, Peter. Spectral characterizations of central elements in Banach algebras. Studia Mathematica, Tome 119 (1996) pp. 47-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p47bwm/

[00000] [1] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.

[00001] [2] M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162. | Zbl 0818.46049

[00002] [3] R. E. Curto and M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434. | Zbl 0822.47034

[00003] [4] S. Grabiner, The spectral diameter in Banach algebras, ibid. 91 (1984), 59-63. | Zbl 0562.46028

[00004] [5] M. Mathieu, Where to find the image of a derivation, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1994, 237-249.

[00005] [6] V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362. | Zbl 0376.46031

[00006] [7] V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211. | Zbl 0407.46043

[00007] [8] J. Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183. | Zbl 0429.46029

[00008] [9] J. Zemánek, Properties of the spectral radius in Banach algebras, in: Spectral Theory, Banach Center Publ. 8, PWN-Polish Scientific Publ., Warszawa, 1982, 579-595.