A stronger version of almost uniform convergence in von Neumann algebras is introduced. This "bundle convergence" is additive and the limit is unique. Some extensions of classical limit theorems are obtained.
@article{bwmeta1.element.bwnjournal-article-smv120i1p23bwm, author = {Ewa Hensz and Ryszard Jajte and Adam Paszkiewicz}, title = {The bundle convergence in von Neumann algebras and their $L\_2$-spaces}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {23-46}, zbl = {0856.46033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p23bwm} }
Hensz, Ewa; Jajte, Ryszard; Paszkiewicz, Adam. The bundle convergence in von Neumann algebras and their $L_2$-spaces. Studia Mathematica, Tome 119 (1996) pp. 23-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p23bwm/
[00000] [1] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York, 1961.
[00001] [2] N. Dang-Ngoc, Pointwise convergence of martingales in von Neumann algebras, Israel J. Math. 34 (1979), 273-280.
[00002] [3] V. F. Gaposhkin, Criteria of the strong law of large numbers for some classes of stationary processes and homogeneous random fields, Theory Probab. Appl. 22 (1977), 295-319.
[00003] [4] V. F. Gaposhkin, Individual ergodic theorem for normal operators in , Functional Anal. Appl. 15 (1981), 18-22. | Zbl 0457.47012
[00004] [5] M. S. Goldstein, Theorems in almost everywhere convergence, J. Oper. Theory 6 (1981), 233-311 (in Russian).
[00005] [6] E. Hensz and R. Jajte, Pointwise convergence theorems in over a von Neumann algebra, Math. Z. 193 (1986), 413-429. | Zbl 0613.46056
[00006] [7] E. Hensz, R. Jajte and A. Paszkiewicz, The unconditional pointwise convergence of orthogonal series in over a von Neumann algebra, Colloq. Math. 69 (1995), 167-178. | Zbl 0856.46034
[00007] [8] E. Hensz, R. Jajte and A. Paszkiewicz, On the almost uniform convergence in noncommutative -spaces, Probab. Math. Statist. 14 (1993), 347-358. | Zbl 0823.46063
[00008] [9] R. Jajte, Strong limit theorems for orthogonal sequences in von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), 225-236. | Zbl 0601.46058
[00009] [10] R. Jajte, Strong Limit Theorems in Noncommutative Probability, Lecture Notes Math. 1100, Springer, Berlin, 1985. | Zbl 0554.46033
[00010] [11] R. Jajte, Strong Limit Theorems in Noncommutative -Spaces, Lecture Notes Math. 1477, Springer, Berlin, 1991. | Zbl 0743.46069
[00011] [12] R. Jajte, Asymptotic formula for normal operators in non-commutative -space, in: Proc. Quantum Probability and Applications IV, Rome 1987, Lecture Notes in Math. 1396, Springer, 1989, 270-278.
[00012] [13] B. Kümmerer, A non-commutative individual ergodic theorem, Invent. Math. 46 (1978), 139-145. | Zbl 0379.46060
[00013] [14] E. C. Lance, Ergodic theorem for convex sets and operator algebras, ibid. 37 (1976), 201-214. | Zbl 0338.46054
[00014] [15] D. Menchoff [D. Men'shov], Sur les séries de fonctions orthogonales, Fund. Math. 4 (1923), 82-105. | Zbl 49.0293.01
[00015] [16] W. Orlicz, Zur Theorie der Orthogonalreihen, Bull. Internat. Acad. Polon. Sci. Sér. A 1927, 81-115. | Zbl 53.0265.05
[00016] [17] A. Paszkiewicz, Convergence in W*-algebras, J. Funct. Anal. 69 (1986), 143-154. | Zbl 0612.46060
[00017] [18] A. Paszkiewicz, A limit in probability in a W*-algebra is unique, ibid. 90 (1990), 429-444. | Zbl 0821.46081
[00018] [19] D. Petz, Quasi-uniform ergodic theorems in von Neumann algebras, Bull. London Math. Soc. 16 (1984), 151-156. | Zbl 0535.46042
[00019] [20] H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), 112-138. | Zbl 48.0485.05
[00020] [21] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457. | Zbl 0051.34201
[00021] [22] Y. G. Sinai and V. V. Anshelevich, Some problems of non-commutative ergodic theory, Russian Math. Surveys 31 (1976), 157-174. | Zbl 0365.46053