The bundle convergence in von Neumann algebras and their L2-spaces
Hensz, Ewa ; Jajte, Ryszard ; Paszkiewicz, Adam
Studia Mathematica, Tome 119 (1996), p. 23-46 / Harvested from The Polish Digital Mathematics Library

A stronger version of almost uniform convergence in von Neumann algebras is introduced. This "bundle convergence" is additive and the limit is unique. Some extensions of classical limit theorems are obtained.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216318
@article{bwmeta1.element.bwnjournal-article-smv120i1p23bwm,
     author = {Ewa Hensz and Ryszard Jajte and Adam Paszkiewicz},
     title = {The bundle convergence in von Neumann algebras and their $L\_2$-spaces},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {23-46},
     zbl = {0856.46033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p23bwm}
}
Hensz, Ewa; Jajte, Ryszard; Paszkiewicz, Adam. The bundle convergence in von Neumann algebras and their $L_2$-spaces. Studia Mathematica, Tome 119 (1996) pp. 23-46. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv120i1p23bwm/

[00000] [1] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York, 1961.

[00001] [2] N. Dang-Ngoc, Pointwise convergence of martingales in von Neumann algebras, Israel J. Math. 34 (1979), 273-280.

[00002] [3] V. F. Gaposhkin, Criteria of the strong law of large numbers for some classes of stationary processes and homogeneous random fields, Theory Probab. Appl. 22 (1977), 295-319.

[00003] [4] V. F. Gaposhkin, Individual ergodic theorem for normal operators in L2, Functional Anal. Appl. 15 (1981), 18-22. | Zbl 0457.47012

[00004] [5] M. S. Goldstein, Theorems in almost everywhere convergence, J. Oper. Theory 6 (1981), 233-311 (in Russian).

[00005] [6] E. Hensz and R. Jajte, Pointwise convergence theorems in L2 over a von Neumann algebra, Math. Z. 193 (1986), 413-429. | Zbl 0613.46056

[00006] [7] E. Hensz, R. Jajte and A. Paszkiewicz, The unconditional pointwise convergence of orthogonal series in L2 over a von Neumann algebra, Colloq. Math. 69 (1995), 167-178. | Zbl 0856.46034

[00007] [8] E. Hensz, R. Jajte and A. Paszkiewicz, On the almost uniform convergence in noncommutative L2-spaces, Probab. Math. Statist. 14 (1993), 347-358. | Zbl 0823.46063

[00008] [9] R. Jajte, Strong limit theorems for orthogonal sequences in von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), 225-236. | Zbl 0601.46058

[00009] [10] R. Jajte, Strong Limit Theorems in Noncommutative Probability, Lecture Notes Math. 1100, Springer, Berlin, 1985. | Zbl 0554.46033

[00010] [11] R. Jajte, Strong Limit Theorems in Noncommutative L2-Spaces, Lecture Notes Math. 1477, Springer, Berlin, 1991. | Zbl 0743.46069

[00011] [12] R. Jajte, Asymptotic formula for normal operators in non-commutative L2-space, in: Proc. Quantum Probability and Applications IV, Rome 1987, Lecture Notes in Math. 1396, Springer, 1989, 270-278.

[00012] [13] B. Kümmerer, A non-commutative individual ergodic theorem, Invent. Math. 46 (1978), 139-145. | Zbl 0379.46060

[00013] [14] E. C. Lance, Ergodic theorem for convex sets and operator algebras, ibid. 37 (1976), 201-214. | Zbl 0338.46054

[00014] [15] D. Menchoff [D. Men'shov], Sur les séries de fonctions orthogonales, Fund. Math. 4 (1923), 82-105. | Zbl 49.0293.01

[00015] [16] W. Orlicz, Zur Theorie der Orthogonalreihen, Bull. Internat. Acad. Polon. Sci. Sér. A 1927, 81-115. | Zbl 53.0265.05

[00016] [17] A. Paszkiewicz, Convergence in W*-algebras, J. Funct. Anal. 69 (1986), 143-154. | Zbl 0612.46060

[00017] [18] A. Paszkiewicz, A limit in probability in a W*-algebra is unique, ibid. 90 (1990), 429-444. | Zbl 0821.46081

[00018] [19] D. Petz, Quasi-uniform ergodic theorems in von Neumann algebras, Bull. London Math. Soc. 16 (1984), 151-156. | Zbl 0535.46042

[00019] [20] H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), 112-138. | Zbl 48.0485.05

[00020] [21] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457. | Zbl 0051.34201

[00021] [22] Y. G. Sinai and V. V. Anshelevich, Some problems of non-commutative ergodic theory, Russian Math. Surveys 31 (1976), 157-174. | Zbl 0365.46053