Let A be a complex Banach algebra with a unit e, let T, φ be continuous functionals, where T is linear, and let F be a nonlinear entire function. If T ∘ F = F ∘ φ and T(e) = 1 then T is multiplicative.
@article{bwmeta1.element.bwnjournal-article-smv119i3p289bwm, author = {Krzysztof Jarosz}, title = {Multiplicative functionals and entire functions}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {289-297}, zbl = {0868.46037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p289bwm} }
Jarosz, Krzysztof. Multiplicative functionals and entire functions. Studia Mathematica, Tome 119 (1996) pp. 289-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p289bwm/
[00000] [1] R. Arens, On a theorem of Gleason, Kahane and Żelazko, Studia Math. 87 (1987), 193-196. | Zbl 0649.46044
[00001] [2] C. Badea, The Gleason-Kahane-Żelazko theorem, Rend. Circ. Mat. Palermo Suppl. 33 (1993), 177-188.
[00002] [3] J. B. Conway, Functions of One Complex Variable, Grad. Texts in Math. 11, Springer, 1986.
[00003] [4] T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1984.
[00004] [5] A. M. Gleason, A characterization of maximal ideals, J. Anal. Math. 19 (1967), 171-172. | Zbl 0148.37502
[00005] [6] K. Jarosz, Generalizations of the Gleason-Kahane-Żelazko theorem, Rocky Mountain J. Math. 21 (1991), 915-921. | Zbl 0781.46035
[00006] [7] J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343. | Zbl 0155.45803
[00007] [8] G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer, 1976.
[00008] [9] Z. Sawoń and A. Warzecha, On the general form of subalgebras of codimension 1 of Banach algebras with a unit, Studia Math. 29 (1968), 249-260. | Zbl 0157.20504
[00009] [10] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, ibid. 30 (1968), 83-85. | Zbl 0162.18504