Fréchet algebras and formal power series
Allan, Graham
Studia Mathematica, Tome 119 (1996), p. 271-288 / Harvested from The Polish Digital Mathematics Library

The class of elements of locally finite closed descent in a commutative Fréchet algebra is introduced. Using this notion, those commutative Fréchet algebras in which the algebra ℂ[[X]] may be embedded are completely characterized, and some applications to the theory of automatic continuity are given.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216300
@article{bwmeta1.element.bwnjournal-article-smv119i3p271bwm,
     author = {Graham Allan},
     title = {Fr\'echet algebras and formal power series},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {271-288},
     zbl = {0858.46041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p271bwm}
}
Allan, Graham. Fréchet algebras and formal power series. Studia Mathematica, Tome 119 (1996) pp. 271-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p271bwm/

[00000] [1] G. R. Allan, Embedding the algebra of formal power series in a Banach algebra, Proc. London Math. Soc. (3) 25 (1972), 329-340. | Zbl 0243.46059

[00001] [2] G. R. Allan, Elements of finite closed descent in a Banach algebra, J. London Math. Soc. (2) 7 (1973), 462-466. | Zbl 0274.46040

[00002] [3] G. R. Allan, A remark in automatic continuity theory, Bull. London Math. Soc. 12 (1980), 452-454. | Zbl 0462.46034

[00003] [4] R. F. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 632-630.

[00004] [5] R. F. Arens, A generalization of normed rings, Pacific J. Math. 2 (1952), 455-471. | Zbl 0047.35802

[00005] [6] R. F. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182. | Zbl 0087.31802

[00006] [7] H. Cartan, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, Hermann, Paris, 1963. | Zbl 0114.03702

[00007] [8] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183. | Zbl 0391.46037

[00008] [9] J. Esterle, Elements for a classification of commutative radical Banach algebras, in: Radical Banach Algebras and Automatic Continuity, J. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, 1983, 4-65.

[00009] [10] J. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math. 32, Amer. Math. Soc., 1984, 107-129. | Zbl 0569.46031

[00010] [11] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1953; third printing 1971). | Zbl 0047.35502