We give a simple proof of the sufficiency of a log-lipschitzian condition for the uniqueness of G-measures and g-measures which were studied by G. Brown, A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian condition together with positivity is not sufficient. In the special case where the defining function depends only upon two coordinates, we find a necessary and sufficient condition. The special case of Riesz products is discussed and the Hausdorff dimension of Riesz products is calculated.
@article{bwmeta1.element.bwnjournal-article-smv119i3p255bwm, author = {Ai Fan}, title = {On uniqueness of G-measures and g-measures}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {255-269}, zbl = {0863.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p255bwm} }
Fan, Ai. On uniqueness of G-measures and g-measures. Studia Mathematica, Tome 119 (1996) pp. 255-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p255bwm/
[00000] [1] L. Breiman, Probability, Addison-Wesley, 1968.
[00001] [2] G. Brown and A. H. Dooley, Odometer actions on G-measures, Ergodic Theory Dynam. Systems 11 (1991), 279-307. | Zbl 0739.58032
[00002] [3] Y. S. Chow and H. Teicher, Probability Theory, 2nd ed., Springer Texts Statist., Springer, 1988.
[00003] [4] A. H. Fan, Sur les dimensions de mesures, Studia Math. 111 (1994), 1-17.
[00004] [5] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, 1979. | Zbl 0439.43001
[00005] [6] B. Host, J. F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986). | Zbl 0589.43001
[00006] [7] B. Jamison, Asymptotic behavior of successive iterates of continuous functions under a Markov operator, J. Math. Anal. Appl. 9 (1964), 203-214. | Zbl 0133.10701
[00007] [8] M. Keane, Strongly mixing g-measures, Invent. Math. 16 (1974), 309-324.
[00008] [9] F. Ledrappier, Principe variationnel et systèmes dynamiques symboliques, Z. Wahrsch. Verw. Gebiete 30 (1974), 185-202. | Zbl 0276.93004
[00009] [10] K. Petersen, Ergodic Theory, Cambridge Univ. Press, 1983.
[00010] [11] B. Petit, g-mesures et schémas de Bernoulli, Thèse de troisième cycle, Université de Rennes, 1974.
[00011] [12] J. Peyrière, Etude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier (Grenoble) 25 (2) (1975), 127-169. | Zbl 0302.43003
[00012] [13] J. Peyrière, Mesures singulières associées à des découpages aléatoires d'un hypercube, Colloq. Math. 51 (1987), 267-276. | Zbl 0639.60018
[00013] [14] W. Rudin, Functional Analysis, McGraw-Hill, 1991.
[00014] [15] E. Seneta, Non-negative Matrices and Markov Chains, Springer Ser. Statist., Springer, 1981. | Zbl 0471.60001
[00015] [16] P. Walters, Ruelle's operator theorem and g-measures, Trans. Amer. Math. Soc. 214 (1975), 375-387. | Zbl 0331.28013