If -A is the generator of an equibounded -semigroup and 0 < Re α < m (m integer), its fractional power can be described in terms of the semigroup, through a formula that is only valid if a certain function is nonzero. This paper is devoted to the study of the zeros of .
@article{bwmeta1.element.bwnjournal-article-smv119i3p247bwm, author = {Celso Martinez and Miguel Sanz}, title = {A note on a formula for the fractional powers of infinitesimal generators of semigroups}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {247-254}, zbl = {0857.47009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p247bwm} }
Martinez, Celso; Sanz, Miguel. A note on a formula for the fractional powers of infinitesimal generators of semigroups. Studia Mathematica, Tome 119 (1996) pp. 247-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p247bwm/
[00000] [1] A. V. Balakrishnan, Fractional powers of closed operators and semigroups generated by them, Pacific J. Math. 10 (1960), 419-437. | Zbl 0103.33502
[00001] [2] H. Berens, P. L. Butzer and U. Westphal, Representation of fractional powers of infinitesimal generators of semigroups, Bull. Amer. Math. Soc. 74 (1968), 191-196. | Zbl 0153.45203
[00002] [3] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346. | Zbl 0154.16104
[00003] [4] H. Komatsu, Fractional powers of operators, II. Interpolation spaces, ibid. 21 (1967), 89-111. | Zbl 0168.10702
[00004] [5] H. Komatsu, Fractional powers of operators, III. Negative powers, J. Math. Soc. Japan 21 (1969), 205-220. | Zbl 0181.41003
[00005] [6] O. E. Landford and W. Robinson, Fractional powers of generators of equicontinuous semigroups and fractional derivatives, J. Austral. Math. Soc. Ser. A 46 (1989), 473-504. | Zbl 0689.47015
[00006] [7] J. L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. Hautes Etudes Sci. 19 (1964), 5-68.
[00007] [8] C. Martinez and M. Sanz, Fractional powers of non-densely defined operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 443-454. | Zbl 0811.47013
[00008] [9] C. Martinez, M. Sanz and L. Marco, Fractional powers of operators, J. Math. Soc. Japan 40 (1988), 331-347. | Zbl 0628.47006
[00009] [10] J. D. Stafney, Integral representations of fractional powers of infinitesimal generators, Illinois J. Math. 20 (1976), 124-133. | Zbl 0315.47025
[00010] [11] U. Westphal, An approach to fractional powers of operators via fractional differences, Proc. London Math. Soc. (3) 29 (1974), 557-576. | Zbl 0294.47030