Regularity properties of singular integral operators
Youssfi, Abdellah
Studia Mathematica, Tome 119 (1996), p. 199-217 / Harvested from The Polish Digital Mathematics Library

For s>0, we consider bounded linear operators from D(n) into D'(n) whose kernels K satisfy the conditions |xγK(x,y)|Cγ|x-y|-n+s-|γ| for x≠y, |γ|≤ [s]+1, |yxγK(x,y)|Cγ|x-y|-n+s-|γ|-1 for |γ|=[s], x≠y. We establish a new criterion for the boundedness of these operators from L2(n) into the homogeneous Sobolev space s(n). This is an extension of the well-known T(1) Theorem due to David and Journé. Our arguments make use of the function T(1) and the BMO-Sobolev space. We give some applications to the Besov and Triebel-Lizorkin spaces as well as some other potential spaces.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216296
@article{bwmeta1.element.bwnjournal-article-smv119i3p199bwm,
     author = {Abdellah Youssfi},
     title = {Regularity properties of singular integral operators},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {199-217},
     zbl = {0857.42008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p199bwm}
}
Youssfi, Abdellah. Regularity properties of singular integral operators. Studia Mathematica, Tome 119 (1996) pp. 199-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i3p199bwm/

[00000] [1] G. Bourdaud, Analyse fonctionnelle dans l'espace Euclidien, Publ. Math. Paris VII 23, 1987. | Zbl 0627.46048

[00001] [2] G. Bourdaud, Réalisation des espaces de Besov homogènes, Ark. Mat. 26 (1988), 41-54.

[00002] [3] G. Bourdaud, Une algèbre maximale d'opérateurs pseudo-différentiels, Comm. Partial Differential Equations 13 (1988), 1059-1083. | Zbl 0659.35115

[00003] [4] A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. | Zbl 0151.16901

[00004] [5] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). | Zbl 0483.35082

[00005] [6] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. | Zbl 0567.47025

[00006] [7] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. | Zbl 0551.46018

[00007] [8] M. Frazier and B. Jawerth, A discrete transform and applications to distribution spaces, J. Funct. Anal. 93 (1990), 34-170.

[00008] [9] M. Frazier, R. Torres and G. Weiss, The boundedness of Calderón-Zygmund operators on the spaces α,qp, Rev. Math. Iberoamericana 4 (1988), 41-72. | Zbl 0694.42023

[00009] [10] L. Hörmander, Pseudo-differential operators of type 1,1, Comm. Partial Differential Equations 13 (1988), 1085-1111. | Zbl 0667.35078

[00010] [11] L. Hörmander, Continuity of pseudo-differential operators of type 1,1, ibid. 14 (1989), 231-243. | Zbl 0688.35107

[00011] [12] M. Meyer, Une classe d'espace fonctionnels de type BMO. Application aux intégrales singulières, Ark. Mat. 27 (1989), 305-318. | Zbl 0698.42007

[00012] [13] Y. Meyer, Régularité des solutions des équations aux dérivées partielles non linéaires, in: Lecture Notes in Math. 842, Springer, 1980, 293-302.

[00013] [14] Y. Meyer, Ondelettes et Opérateurs, I, II, Hermann, 1990. | Zbl 0694.41037

[00014] [15] L. Päivärinta, Pseudo-differential operators in Hardy-Triebel spaces, Z. Anal. Anwendungen 2 (1983), 235-242. | Zbl 0544.47046

[00015] [16] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976. | Zbl 0356.46038

[00016] [17] T. Runst, Pseudo-differential operators of the “exotic” class L1,10 in spaces of Besov and Triebel-Lizorkin type, Ann. Global Anal. Geom. 3 (1985), 13-28. | Zbl 0549.46020

[00017] [18] R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558. | Zbl 0437.46028

[00018] [19] M. S. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, 1991.

[00019] [20] R. Torres, Continuity properties of pseudodifferential operators of type 1,1, Comm. Partial Differential Equations 15 (1990), 1313-1328. | Zbl 0737.35170

[00020] [21] H. Triebel, Theory of Function Spaces, Geest & Portig, Leipzig, and Birkhäuser, 1983.

[00021] [22] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.

[00022] [23] A. Youssfi, Continuité-Besov des opérateurs définis par des intégrales singulières, Manuscripta Math. 65 (1989), 289-310. | Zbl 0677.42012

[00023] [24] A. Youssfi, Commutators on Besov spaces and factorization of the paraproduct, Bull. Sci. Math. 119 (1995), 157-186. | Zbl 0827.46031

[00024] [25] A. Youssfi, Regularity properties of commutators and BMO-Triebel-Lizorkin spaces, Ann. Inst. Fourier (Grenoble) 43 (1995), 795-807. | Zbl 0827.46030