On differentiation of integrals with respect to bases of convex sets.
Stokolos, A.
Studia Mathematica, Tome 119 (1996), p. 99-108 / Harvested from The Polish Digital Mathematics Library

Differentiation of integrals of functions from the class Lip(1,1)(I2) with respect to the basis of convex sets is established. An estimate of the rate of differentiation is given. It is also shown that there exist functions in Lip(1,1)(IN), N ≥ 3, and H1ω(I2) with ω(δ)/δ → ∞ as δ → +0 whose integrals are not differentiated with respect to the bases of convex sets in the corresponding dimension.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216295
@article{bwmeta1.element.bwnjournal-article-smv119i2p99bwm,
     author = {A. Stokolos},
     title = {On differentiation of integrals with respect to bases of convex sets.},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {99-108},
     zbl = {0860.28002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p99bwm}
}
Stokolos, A. On differentiation of integrals with respect to bases of convex sets.. Studia Mathematica, Tome 119 (1996) pp. 99-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p99bwm/

[00000] [1] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs Math., Birkhäuser, Boston, 1984. | Zbl 0545.49018

[00001] [2] M. de Guzmán, Differentiation of Integrals in n, Lecture Notes in Math. 481, Springer, 1975.

[00002] [3] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Math. Stud. 46, Amsterdam, 1981. | Zbl 0449.42001

[00003] [4] V. I. Kolyada, Rearrangements of functions and embedding theorems, Uspekhi Mat. Nauk 49 (5) (1989), 61-95 (in Russian).

[00004] [5] V. G. Maz'ya and T. O. Shaposhnikova, Multipliers in Spaces of Differentiable Functions, Izdat. Leningrad. Univ., Leningrad, 1986 (in Russian).

[00005] [6] O. Nikodym, Sur la mesure des ensembles plans dont tous les points sont rectilinéairement accessibles, Fund. Math. 10 (1927), 116-168. | Zbl 53.0176.02

[00006] [7] S. M. Nikol'skiĭ, Approximation of Functions of Several Variables and Embedding Theorems, Izdat. Nauka, Moscow, 1969 (in Russian).

[00007] [8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. | Zbl 0207.13501

[00008] [9] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, Cambridge, 1968. | Zbl 0157.38204