A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.
Żelazko, W.
Studia Mathematica, Tome 119 (1996), p. 195-198 / Harvested from The Polish Digital Mathematics Library

We construct two examples of complete multiplicatively convex algebras with the property that all their maximal commutative subalgebras and consequently all commutative closed subalgebras are Banach algebras. One of them is non-metrizable and the other is metrizable and non-Banach. This solves Problems 12-16 and 22-24 of [7].

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216294
@article{bwmeta1.element.bwnjournal-article-smv119i2p195bwm,
     author = {W. \.Zelazko},
     title = {A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {195-198},
     zbl = {0879.46023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p195bwm}
}
Żelazko, W. A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.. Studia Mathematica, Tome 119 (1996) pp. 195-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p195bwm/

[00000] [1] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001

[00001] [2] A. Kokk and W. Żelazko, On vector spaces and algebras with maximal locally pseudoconvex topologies, Studia Math. 112 (1995), 195-201. | Zbl 0837.46037

[00002] [3] E. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952). | Zbl 0047.35502

[00003] [4] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.

[00004] [5] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. | Zbl 0395.46001

[00005] [6] W. Żelazko, Selected Topics in Topological Algebras, Aarhus Univ. Lecture Notes No 31 (1971). | Zbl 0221.46041

[00006] [7] W. Żelazko, On certain open problems in topological algebras, Rend. Sem. Mat. Fis. Milano 59 (1989), 1992, 49-58. | Zbl 0755.46019

[00007] [8] W. Żelazko, Concerning entire functions in B0-algebras, Studia Math. 110 (1994), 283-290. | Zbl 0803.46051