Existence, uniqueness and ergodicity for the stochastic quantization equation
Gątarek, Dariusz ; Gołdys, Beniamin
Studia Mathematica, Tome 119 (1996), p. 179-193 / Harvested from The Polish Digital Mathematics Library

Existence, uniqueness and ergodicity of weak solutions to the equation of stochastic quantization in finite volume is obtained as a simple consequence of the Girsanov theorem.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216293
@article{bwmeta1.element.bwnjournal-article-smv119i2p179bwm,
     author = {Dariusz G\k atarek and Beniamin Go\l dys},
     title = {Existence, uniqueness and ergodicity for the stochastic quantization equation},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {179-193},
     zbl = {0858.60058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p179bwm}
}
Gątarek, Dariusz; Gołdys, Beniamin. Existence, uniqueness and ergodicity for the stochastic quantization equation. Studia Mathematica, Tome 119 (1996) pp. 179-193. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p179bwm/

[00000] [AR] S. Albeverio and M. Röckner, Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields 89 (1991), 347-386. | Zbl 0725.60055

[00001] [BCM] V. S. Borkar, R. T. Chari and S. K. Mitter, Stochastic quantization of field theory in finite and infinite volume, J. Funct. Anal. 81 (1988), 184-206. | Zbl 0657.60084

[00002] [DZ] G. DaPrato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.

[00003] [H] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Aalpen an den Rijn, 1980.

[00004] [HK] Y. Z. Hu and G. Kallianpur, Singular infinite-dimensional SDE and stochastic quantization of P(ϕ)2 field, submitted.

[00005] [IW] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.

[00006] [JM] G. Jona-Lasinio and P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys. 101 (1985), 409-436. | Zbl 0588.60054

[00007] [LS] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer, New York, 1977.

[00008] [MT] S. P. Meyn and R. L. Tweedie, Stability of Markovian processes II: continuous-time processes and sampled chains, Adv. Appl. Probab. 25 (1993), 487-517. | Zbl 0781.60052

[00009] [PW] G. Parisi and Y. S. Wu, Perturbation theory without gauge fixing, Sci. Sinica 24 (1981), 483-496.

[00010] [Si] B. Simon, The P(ϕ)2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, 1974.

[00011] [St] Ł. Stettner, Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103-114. | Zbl 0815.60072

[00012] [W] L. Wu, Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1994), 202-231. | Zbl 0798.60067