We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
@article{bwmeta1.element.bwnjournal-article-smv119i2p129bwm, author = {M. Mbekhta and V. M\"uller}, title = {On the axiomatic theory of spectrum II}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {129-147}, zbl = {0857.47002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p129bwm} }
Mbekhta, M.; Müller, V. On the axiomatic theory of spectrum II. Studia Mathematica, Tome 119 (1996) pp. 129-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p129bwm/
[00000] [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32(1985), 279-294.
[00001] [2] M. Berkani et A. Ouahab, Théorème de l'application spectrale pour le spectre essentiel quasi-Fredholm, Proc. Amer. Math. Soc., to appear.
[00002] [3] J. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, ibid. 66 (1977), 301-314. | Zbl 0375.47001
[00003] [4] K. H. Förster and G.-O. Liebentrau, Semi-Fredholm operators and sequence conditions, Manuscripta Math. 44 (1983), 35-44.
[00004] [5] M. A. Gol'dman and S. N. Krachkovskiĭ, On the stability of some properties of a closed linear operator, Dokl. Akad. Nauk SSSR 209 (1973), 769-772 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 502-505.
[00005] [6] S. Grabiner, Ascent, descent and compact perturbations, Proc. Amer. Math. Soc. 71 (1978), 79-80. | Zbl 0392.47002
[00006] [7] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337. | Zbl 0477.47013
[00007] [8] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971),17-32. | Zbl 0203.45601
[00008] [9] R. Harte, Spectral mapping theorems, Proc. Roy. Irish Acad. Sect. A 72 (1972), 89-107. | Zbl 0206.13301
[00009] [10] M. A. Kaashoek, Stability theorems for closed linear operators, Indag. Math. 27 (1965), 452-466. | Zbl 0138.07601
[00010] [11] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. | Zbl 0090.09003
[00011] [12] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. | Zbl 0148.12601
[00012] [13] V. Kordula, The essential Apostol spectrum and finite-dimensional perturbations, to appear. | Zbl 0880.47005
[00013] [14] V. Kordula and V. Müller, The distance from the Apostol spectrum, Proc. Amer. Math, Soc., to appear. | Zbl 0861.47008
[00014] [15] V. Kordula and V. Müller, On the axiomatic theory of spectrum, this issue, 109-128. | Zbl 0857.47001
[00015] [16] J. P. Labrousse, Les opérateurs quasi-Fredholm : une généralisation des opérateurs semi-Fredholm, y Rend. Circ. Mat. Palermo 29 (1980), 161-258. | Zbl 0474.47008
[00016] [17] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. | Zbl 0694.47002
[00017] [18] M. Mbekhta et A. Ouahab, Opérateur semi-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged), to appear. | Zbl 0742.47001
[00018] [19] M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836. | Zbl 0742.47001
[00019] [20] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380. | Zbl 0845.47005
[00020] [21] V. Rakočevič, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-208. | Zbl 0794.47003
[00021] [22] B. N. Sadovskiĭ, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. | Zbl 0243.47033
[00022] [23] P. Saphar, Contributions à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. | Zbl 0139.08502
[00023] [24] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489. | Zbl 0721.47005
[00024] [25] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. | Zbl 0306.47014
[00025] [26] A. E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18-49. | Zbl 0138.07602