On the axiomatic theory of spectrum
Kordula, V. ; Müller, V.
Studia Mathematica, Tome 119 (1996), p. 109-128 / Harvested from The Polish Digital Mathematics Library

There are a number of spectra studied in the literature which do not fit into the axiomatic theory of Żelazko. This paper is an attempt to give an axiomatic theory for these spectra, which, apart from the usual types of spectra, like one-sided, approximate point or essential spectra, include also the local spectra, the Browder spectrum and various versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular or essentially semiregular).

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216289
@article{bwmeta1.element.bwnjournal-article-smv119i2p109bwm,
     author = {V. Kordula and V. M\"uller},
     title = {On the axiomatic theory of spectrum},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {109-128},
     zbl = {0857.47001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p109bwm}
}
Kordula, V.; Müller, V. On the axiomatic theory of spectrum. Studia Mathematica, Tome 119 (1996) pp. 109-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i2p109bwm/

[00000] [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.

[00001] [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039

[00002] [3] R. E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-413. | Zbl 0662.47003

[00003] [4] N. Dunford, Survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217-274. | Zbl 0088.32102

[00004] [5] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32. | Zbl 0203.45601

[00005] [6] J. D. Gray, Local analytic extensions of the resolvent, Pacific J. Math. 27 (1968), 305-324. | Zbl 0172.17204

[00006] [7] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

[00007] [8] V. Kordula, The essential Apostol spectrum and finite dimensional perturbations, to appear. | Zbl 0880.47005

[00008] [9] V. Kordula and V. Müller, The distance from the Apostol spectrum, to appear. | Zbl 0861.47008

[00009] [10] M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105. | Zbl 0694.47002

[00010] [11] M. Mbekhta et A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Publ. Inst. Rech. Math. Av. Lille 22 (1990), XII.

[00011] [12] M. Mbekhta et A. Ouahab, Contribution à la théorie spectrale généralisée dans les espaces de Banach, C. R. Acad. Sci. Paris 313 (1991), 833-836. | Zbl 0742.47001

[00012] [13] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380. | Zbl 0845.47005

[00013] [14] V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209. | Zbl 0794.47003

[00014] [15] T. J. Ransford, Generalized spectra and analytic multivalued functions, J. London Math. Soc. 29 (1984), 306-322. | Zbl 0508.46036

[00015] [16] P. Saphar, Contributions à l'étude des aplications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. | Zbl 0139.08502

[00016] [17] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.

[00017] [18] C. Schmoeger, Relatively regular operators and a spectral mapping theorem, J. Math. Anal. Appl. 175 (1993), 315-320. | Zbl 0781.47009

[00018] [19] Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148. | Zbl 0306.47014

[00019] [20] F.-H. Vasilescu, Analytic functions and some residual spectral properties, Rev. Roumaine Math. Pures Appl. 15 (1970), 435-451. | Zbl 0194.44101

[00020] [21] F.-H. Vasilescu, Spectral mapping theorem for the local spectrum, Czechoslovak Math. J. 30 (1980), 28-35. | Zbl 0437.47003

[00021] [22] P. Vrbová, On local spectral properties of operators in Banach spaces, ibid. 23 (1973), 483-492. | Zbl 0268.47006

[00022] [23] W. Żelazko, Axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261. | Zbl 0426.47002