Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying .
@article{bwmeta1.element.bwnjournal-article-smv119i1p77bwm, author = {Wolfgang Lusky}, title = {On generalized Bergman spaces}, journal = {Studia Mathematica}, volume = {119}, year = {1996}, pages = {77-95}, zbl = {0857.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i1p77bwm} }
Lusky, Wolfgang. On generalized Bergman spaces. Studia Mathematica, Tome 119 (1996) pp. 77-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i1p77bwm/
[00000] [1] S. Axler, Bergman spaces and their operators, in: Survey of Some Recent Results in Operator Theory, B. Conway and B. Morrel (eds.), Pitman Res. Notes, 1988, 1-50.
[00001] [2] K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Sec. A 54 (1993), 70-79. | Zbl 0801.46021
[00002] [3] O. Blasco, Multipliers on weighted Besov spaces of analytic functions, in: Contemp. Math. 144, Amer. Math. Soc., 1993, 23-33. | Zbl 0838.42002
[00003] [4] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in , Astérisque 77 (1980), 12-66. | Zbl 0472.46040
[00004] [5] P. L. Duren, Theory of -Spaces, Academic Press, New York, 1970. | Zbl 0215.20203
[00005] [6] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. | Zbl 0246.30031
[00006] [7] T. M. Flett, Lipschitz spaces of functions on the circle and the disc, ibid. 39 (1972), 125-158. | Zbl 0253.46084
[00007] [8] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439. | Zbl 0003.15601
[00008] [9] G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256. | Zbl 0060.21702
[00009] [10] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249. | Zbl 0224.46041
[00010] [11] W. Lusky, On the structure of and , Math. Nachr. 159 (1992), 279-289. | Zbl 0815.46023
[00011] [12] W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320. | Zbl 0823.46025
[00012] [13] M. Mateljević and M. Pavlović, -behaviour of the integral means of analytic functions, Studia Math. 77 (1984), 219-237.
[00013] [14] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280. | Zbl 0197.39001
[00014] [15] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302. | Zbl 0227.46034
[00015] [16] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279. | Zbl 0367.46053
[00016] [17] A. L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25. | Zbl 0508.31001
[00017] [18] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. | Zbl 0621.42001
[00018] [19] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Press, 1991. | Zbl 0724.46012
[00019] [20] P. Wojtaszczyk, On unconditional polynomial bases in and Bergman spaces, Constr. Approx., to appear. | Zbl 0863.41004